Pixelthumb|upright=1.4|Image numérique dont une portion est très agrandie. Les pixels apparaissent ici comme des petits carrés. Le pixel, souvent abrégé p ou px, est l'unité de base de la définition d'une matricielle. Ce mot provient de la locution anglaise picture element, qui signifie « élément d'image ». Le pixel est l'unité minimale adressable par le contrôleur vidéo. C'est aussi l'unité utilisée pour spécifier les définitions d'affichage (largeur × hauteur).
Image resolutionImage resolution is the level of detail an holds. The term applies to digital images, film images, and other types of images. "Higher resolution" means more image detail. Image resolution can be measured in various ways. Resolution quantifies how close lines can be to each other and still be visibly resolved. Resolution units can be tied to physical sizes (e.g. lines per mm, lines per inch), to the overall size of a picture (lines per picture height, also known simply as lines, TV lines, or TVL), or to angular subtense.
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
Statistical model validationIn statistics, model validation is the task of evaluating whether a chosen statistical model is appropriate or not. Oftentimes in statistical inference, inferences from models that appear to fit their data may be flukes, resulting in a misunderstanding by researchers of the actual relevance of their model. To combat this, model validation is used to test whether a statistical model can hold up to permutations in the data.
Statistical model specificationIn statistics, model specification is part of the process of building a statistical model: specification consists of selecting an appropriate functional form for the model and choosing which variables to include. For example, given personal income together with years of schooling and on-the-job experience , we might specify a functional relationship as follows: where is the unexplained error term that is supposed to comprise independent and identically distributed Gaussian variables.
Pixel artvignette|alt=Borne d'arcade pixel art|Borne d'arcade en pixel art rétro (détourage, projection, tramage et lissage simples). Le pixel art , aussi appelé art du pixel ou art des pixels au Québec, désigne une qui utilise une définition d'écran basse et un nombre de couleurs limité (même si cette double limitation n'est rigoureuse qu'historiquement parlant). De fait, le matériau de base du pixel art est la représentation plastique du pixel. C'est-à-dire une surface plus ou moins carrée et colorée, comme composante élémentaire de toute création de pixel art.
Model selectionModel selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. In the context of learning, this may be the selection of a statistical model from a set of candidate models, given data. In the simplest cases, a pre-existing set of data is considered. However, the task can also involve the design of experiments such that the data collected is well-suited to the problem of model selection.
Active-pixel sensorAn active-pixel sensor (APS) is an , which was invented by Peter J.W. Noble in 1968, where each pixel sensor unit cell has a photodetector (typically a pinned photodiode) and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Modèle linéairevignette|Données aléatoires sous forme de points, et leur régression linéaire. Un modèle linéaire multivarié est un modèle statistique dans lequel on cherche à exprimer une variable aléatoire à expliquer en fonction de variables explicatives X sous forme d'un opérateur linéaire. Le modèle linéaire est donné selon la formule : où Y est une matrice d'observations multivariées, X est une matrice de variables explicatives, B est une matrice de paramètres inconnus à estimer et U est une matrice contenant des erreurs ou du bruit.