Symétrie Cvignette|upright=1.3|Illusion de symétrie : le reflet de l'ombre de la lampe (sous l'effet du flash de l'appareil photo) semble être le reflet de celle-ci ! En physique des particules, la conjugaison de charge, ou transformation de charge, ou inversion de charge est possiblement observable en ce qui concerne l'électromagnétisme, la gravité, et l'interaction forte. En revanche, la « Symétrie C » (symétrie de charge) n'est pas observée « dans le tableau » de l'interaction faible. C(x)= -x. C(e+)= e-. C(e-)= e+.
Conformation décaléeIn organic chemistry, a staggered conformation is a chemical conformation of an ethane-like moiety abcX–Ydef in which the substituents a, b, and c are at the maximum distance from d, e, and f; this requires the torsion angles to be 60°. It is the opposite of an eclipsed conformation, in which those substituents are as close to each other as possible. Such a conformation exists in any open chain single chemical bond connecting two sp3-hybridised atoms, and is normally a conformational energy minimum.
Ricci calculusIn mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.
AnticommutativitéEn mathématiques, l'anticommutativité est la propriété caractérisant les opérations pour lesquelles intervertir deux arguments transforme le résultat en son opposé. Par exemple, une opération binaire ✻ est anticommutative si Cette propriété intervient en algèbre, en géométrie, en analyse et, par conséquent, en physique. Étant donné un entier naturel n, une opération n-aire est dite anticommutative si intervertir deux arguments transforme le résultat en son opposé.
2-forme de courbureLa 2-forme de courbure est une forme différentielle induite par une forme de connexion sur un fibré principal dans le domaine de la géométrie différentielle. Soient : un groupe de Lie ; l'algèbre de Lie de ; une variété différentielle ; un -fibré principal sur ; la représentation adjointe de sur son algèbre de Lie ; le fibré adjoint de sur ; le produit extérieur sur les -formes différentielles réelles sur ; le crochet de Lie sur l'algèbre de Lie ; le produit wedge-crochet sur les -formes différentielles à valeurs en sur , défini par les combinaisons linéaires de : une 1-forme de connexion sur .
Ordre de symétriethumb|Une sphère colorée permet d'illustrer les 48 domaines fondamentaux de la symétrie octaédrique. L'ordre de symétrie d'un objet est le nombre d'arrangements distincts pour lequel l'objet en question est globalement invariant. En d'autres termes, il s'agit de l'ordre de son groupe de symétrie. L'objet en question peut être une molécule, un réseau cristallin, un pavage et de manière plus générale, tout objet mathématique en N-dimensions. Théorie des groupes, une branche des mathématiques qui traite des pr
Diagramme états-transitionsUn diagramme états-transitions est un schéma utilisé en génie logiciel pour représenter des automates déterministes. Il fait partie du modèle UML et s'inspire principalement du formalisme des statecharts et rappelle les grafcets des automates. S'ils ne permettent pas de comprendre globalement le fonctionnement du système, ils sont directement transposables en algorithme. En effet, contrairement au diagramme d'activité qui aborde le système d'un point de vue global, le diagramme états-transitions cible un objet unique du système.
Table de transition d'étatDans la théorie des automates et en logique séquentielle, une table de transition d'état est un tableau montrant dans quel état (ou états dans le cas d'un automate fini non déterministe) d'un automate fini se déplacer, sur la base de l'état actuel et des autres entrées. Une table d'état est essentiellement une table de vérité, dans laquelle certaines des entrées sont l'état actuel, et les sorties comprennent l'état suivant, en même temps que les autres sorties.
Espace lenticulaireUn espace lenticulaire est une variété de dimension 3, construit comme espace quotient de la sphère S par l'action libre d'un groupe cyclique d'ordre premier. Les espaces lenticulaires forment une famille, dont les membres sont notés L(p, q). L'adjectif « lenticulaire » vient d'une certaine représentation du domaine fondamental du groupe cyclique, qui ressemble à l'intersection de deux cercles. Leur relative simplicité en fait des objets étudiés en topologie algébrique, notamment en théorie des nœuds, en K-théorie et en théorie du cobordisme.