DébruitageLe débruitage est une technique d'édition qui consiste à supprimer des éléments indésirables (« bruit »), afin de rendre un document, un signal (numérique ou analogique) ou un environnement plus intelligible ou plus pur. Ne pas confondre le débruitage avec la réduction de bruit. Sur le plan sonore, le débruitage consiste à réduire ou anéantir le rendu d'ondes sonores « parasites » (ou « bruit »).
Diversification (finance)La diversification est, en finance, le processus par lequel un gestionnaire d'actifs alloue ses capitaux à des investissements de différents types. La diversification permet d'éviter d'être exposé aux risques d'une classe d'actifs. En investissant dans un grand nombre d'actifs, le gestionnaire d'actifs assure une moindre volatilité à son portefeuille. La diversification consiste en le choix, par un gestionnaire d'actifs, de multiplier le type d'actifs contenu dans son portefeuille d'actifs, ainsi que de multiplier les actifs eux-mêmes.
Portefeuille (finance)Un portefeuille (en finance) désigne une collection d'actifs financiers détenus par un établissement ou un individu. Cela peut aussi désigner des valeurs mobilières détenues à titre d'investissements, de dépôt, de provision ou de garantie. Une caractéristique importante d'un portefeuille est son degré de diversification qui permet d'atteindre un juste milieu entre le risque, la volatilité et la rentabilité du portefeuille, tout en tenant compte de la durée prévue du placement (horizon de temps).
Graphe planaireDans la théorie des graphes, un graphe planaire est un graphe qui a la particularité de pouvoir se représenter sur un plan sans qu'aucune arête (ou arc pour un graphe orienté) n'en croise une autre. Autrement dit, ces graphes sont précisément ceux que l'on peut plonger dans le plan, ou encore les graphes dont le nombre de croisements est nul. Les méthodes associées à ces graphes permettent de résoudre des problèmes comme l'énigme des trois maisons et d'autres plus difficiles comme le théorème des quatre couleurs.
Convergence de variables aléatoiresDans la théorie des probabilités, il existe différentes notions de convergence de variables aléatoires. La convergence (dans un des sens décrits ci-dessous) de suites de variables aléatoires est un concept important de la théorie des probabilités utilisé notamment en statistique et dans l'étude des processus stochastiques. Par exemple, la moyenne de n variables aléatoires indépendantes et identiquement distribuées converge presque sûrement vers l'espérance commune de ces variables aléatoires (si celle-ci existe).