Fonction quadratiqueEn mathématiques, une fonction quadratique est une fonction de plusieurs variables polynomiale de degré 2. Cette notion généralise ainsi celle de fonction du second degré. Elle réalise aussi la partie régulière du développement de Taylor à l’ordre 2 pour une fonction de plusieurs variables. La matrice hessienne associée est la même en tout point, et ne dépend que de la forme quadratique constituée par les termes de degré 2. Elle permet aussi d’écrire le système d'équations linéaires qui détermine les points critiques de la fonction.
Construction engineeringConstruction engineering, also known as construction operations, is a professional subdiscipline of civil engineering that deals with the designing, planning, construction, and operations management of infrastructure such as roadways, tunnels, bridges, airports, railroads, facilities, buildings, dams, utilities and other projects. Construction engineers learn some of the design aspects similar to civil engineers as well as project management aspects.
Polynôme unitaireEn algèbre commutative, un polynôme unitaire, ou polynôme monique, est un polynôme non nul dont le coefficient dominant (le coefficient du terme de plus haut degré) est égal à 1. Un polynôme P est donc unitaire si et seulement s'il s'écrit sous la forme Sur les polynômes unitaires à coefficients dans un anneau commutatif A donné, la relation divise est une relation d'ordre partiel. Si A est un corps, alors tout polynôme non nul est associé à un polynôme unitaire et un seul.
Polynôme symétriqueEn mathématiques, un polynôme symétrique est un polynôme en plusieurs indéterminées, invariant par permutation de ses indéterminées. Ils jouent notamment un rôle dans les relations entre coefficients et racines. Soit A un anneau commutatif unitaire. Un polynôme Q(T, ..., T) en n indéterminées à coefficients dans A est dit symétrique si pour toute permutation s de l'ensemble d'indices {1, ..., n}, l'égalité suivante est vérifiée : Exemples Pour n = 1, tout polynôme est symétrique.
Quadratic fieldIn algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some where is a (uniquely defined) square-free integer different from and . If , the corresponding quadratic field is called a real quadratic field, and, if , it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers.
Division d'un polynômeEn algèbre, l'anneau K[X] des polynômes à une indéterminée X et à coefficients dans un corps commutatif K, comme celui des nombres rationnels, réels ou complexes, dispose d'une division euclidienne, qui ressemble formellement à celle des nombres entiers. Si A et B sont deux polynômes de K[X], avec B non nul, il existe un unique couple (Q, R) de polynômes de K[X] tel que : Ici l'expression deg S, si S désigne un polynôme, signifie le degré de S.
Irrationnel quadratiqueUn irrationnel quadratique est un nombre irrationnel solution d'une équation quadratique à coefficients rationnels, autrement dit, un nombre réel algébrique de degré 2. Il engendre donc un corps quadratique réel Q(), où d est un entier positif sans facteur carré. Les irrationnels quadratiques sont caractérisés par la périodicité à partir d'un certain rang de leur développement en fraction continue (théorème de Lagrange). Les exemples les plus simples d'irrationnels quadratiques sont les racines carrées d'entiers naturels non carrés (le plus célèbre étant ).
Polynôme homogèneEn mathématiques, un polynôme homogène, ou forme algébrique, est un polynôme en plusieurs indéterminées dont tous les monômes non nuls sont de même degré total. Par exemple le polynôme x + 2xy + 9xy est homogène de degré 5 car la somme des exposants est 5 pour chacun des monômes ; les polynômes homogènes de degré 2 sont les formes quadratiques. Les polynômes homogènes sont omniprésents en mathématiques et en physique théorique. Soit K un corps commutatif. Un polynôme homogène de degré d en n variables est un polynôme dans K[X, .
Liste de corps d'étatCet article constitue une liste rassemblant selon les répartitions communément usitées les corps de métier dans le domaine du génie civil, communément désignés sous l'appellation collective de corps d'état. Il s'agit d'appellations couramment rencontrées dans les allotissements des marchés de travaux.
Théorie MLa théorie M est une théorie physique devant unifier les différentes versions de la théorie des supercordes. L'existence de cette théorie fut conjecturée par Edward Witten en 1995, lors d'un colloque sur la théorie des cordes à l'Université de Californie du Sud. Cette annonce engendra un tourbillon de nouvelles recherches, qu'on a appelé la . Selon Witten le M de théorie M peut signifier magie, mystère ou membrane au choix, et le véritable sens ne s'imposera que quand la théorie sera formulée définitivement.