Titanate de strontiumLe titanate de strontium est un composé chimique de formule . Il s'agit d'un composé paraélectrique à température ambiante et cristallisant dans une structure pérovskite cubique. À basse température, il tend vers une transition de phase ferroélectrique avec une permittivité très élevée, de l'ordre de , mais demeure paraélectrique jusqu'à la température la plus basse mesurable en raison de fluctuations quantiques qui en font un matériau paraélectrique quantique.
Densité d'états électroniquesEn physique du solide et physique de la matière condensée, la densité d'états électroniques, en anglais Density of States ou DOS, quantifie le nombre d'états électroniques susceptibles d’être occupés, et possédant une énergie donnée dans le matériau considéré. Elle est généralement notée par l'une des lettres g, ρ, D, n ou N. Plus précisément, on définit la densité d'états par le fait que est le nombre d'états électroniques disponibles, avec une énergie comprise entre et , par unité de volume du solide ou par maille élémentaire du cristal étudié.
ÉlectronL'électron, un des composants de l'atome avec les neutrons et les protons, est une particule élémentaire qui possède une charge élémentaire de signe négatif. Il est fondamental en chimie, car il participe à presque tous les types de réactions chimiques et constitue un élément primordial des liaisons présentes dans les molécules. En physique, l'électron intervient dans une multitude de rayonnements et d'effets.
Superconducting wireSuperconducting wires are electrical wires made of superconductive material. When cooled below their transition temperatures, they have zero electrical resistance. Most commonly, conventional superconductors such as niobium–titanium are used, but high-temperature superconductors such as YBCO are entering the market. Superconducting wire's advantages over copper or aluminum include higher maximum current densities and zero power dissipation.
Spectroscopie photoélectroniqueLa spectroscopie photoélectronique (photoelectron spectroscopy, PES) ou spectroscopie de photoémission (photoemission spectroscopy) est un ensemble de méthodes spectroscopiques basées sur la détection d'électrons émis par des molécules après le bombardement de celle-ci par une onde électromagnétique monochromatique. Cette spectroscopie fait partie des méthodes de spectroscopie électronique. Elle est utilisée pour mesurer l'énergie de liaison des électrons dans la matière, c'est-à-dire à sonder les états occupés.
Relation de dispersionEn physique théorique, une relation de dispersion est une relation entre la pulsation et le vecteur d'onde d'une onde monochromatique. Par extension, la dualité onde-corpuscule de la physique quantique conduit à l'introduction de relation de dispersion pour une particule, comme relation entre son énergie et sa quantité de mouvement . Un milieu non dispersif est caractérisé par un indice indépendant de la pulsation. La relation de dispersion s'écritavec le vecteur d'onde.
Supraconducteur à haute températureUn supraconducteur à haute température (en anglais, high-temperature superconductor : high- ou HTSC) est un matériau présentant une température critique de supraconductivité relativement élevée par rapport aux supraconducteurs conventionnels, c'est-à-dire en général à des températures supérieures à soit . Ce terme désigne en général la famille des matériaux de type cuprate, dont la supraconductivité existe jusqu'à . Mais d'autres familles de supraconducteurs, comme les supraconducteurs à base de fer découverts en 2008, peuvent aussi être désignées par ce même terme.
Spectrométrie photoélectronique Xvignette|upright=1.4|Machine XPS avec un analyseur de masse (A), des lentilles électromagnétiques (B), une chambre d'ultra-vide (C), une source de rayon X (D) et une pompe à vide (E) La spectrométrie photoélectronique X, ou spectrométrie de photoélectrons induits par rayons X (en anglais, X-Ray photoelectron spectrometry : XPS) est une méthode de spectrométrie photoélectronique qui implique la mesure des spectres de photoélectrons induits par des photons de rayon X.
PhononEn physique, un phonon correspond à une excitation collective dans un arrangement périodique d'atomes constituant une structure cristalline ou amorphe. La déformation est élastique. L'onde qui se propage peut être assimilée à une quasi-particule. Ils permettent d'expliquer les propriétés physiques des solides : la capacité thermique ; la conductivité thermique ; la capacité à propager le son ; la dilatation thermique. Le concept de phonon a été créé par Igor Tamm en et le mot « phonon » (du grec ancien / phonê, la voix) a été inventé par Yakov Frenkel en .
Liaison nucléaireLa liaison nucléaire est le phénomène qui assure la cohésion d'un noyau atomique. Le noyau atomique est composé de protons de charge électrique positive, et de neutrons de charge électrique nulle. La répulsion coulombienne tend à séparer les protons. C'est la force nucléaire qui permet d'assurer la stabilité du noyau. L'énergie de liaison E d'un noyau atomique est l'énergie qu'il faut fournir au noyau pour le dissocier en ses nucléons, qui s'attirent du fait de la force nucléaire, force qui correspond à l’interaction forte résiduelle.