Fragment (logique)En logique mathématique, un fragment d'un langage ou d'une théorie logique est un sous-ensemble de ce langage obtenu en lui imposant des restrictions syntaxiques. Par conséquent, les formules bien formées d'un fragment sont un sous-ensemble de celles de la logique originale. Cependant, la sémantique des formules dans le fragment et dans la logique originale coïncide, et ainsi toute formule du fragment peut être exprimée dans la logique d'origine.
Déduction naturelleEn logique mathématique, la déduction naturelle est un système formel où les règles de déduction des démonstrations sont proches des façons naturelles de raisonner. C'est une étape importante de l'histoire de la théorie de la démonstration pour plusieurs raisons : contrairement aux systèmes à la Hilbert fondés sur des listes d'axiomes logiques plus ou moins ad hoc, la déduction naturelle repose sur un principe systématique de symétrie : pour chaque connecteur, on donne une paire de règles duales (introduction/élimination) ; elle a conduit Gentzen à inventer un autre formalisme très important en théorie de la démonstration, encore plus « symétrique » : le calcul des séquents ; elle a permis dans les années 1960 d'identifier la première instance de l'isomorphisme de Curry-Howard.
Algèbre des parties d'un ensembleEn théorie des ensembles, l'ensemble des parties d'un ensemble, muni des opérations d'intersection, de réunion, et de passage au complémentaire, possède une structure d'algèbre de Boole. D'autres opérations s'en déduisent, comme la différence ensembliste et la différence symétrique. L'algèbre des parties d'un ensemble étudie l'arithmétique de ces opérations (voir l'article « Opération ensembliste » pour des opérations qui ne laissent pas stable l'ensemble des parties d'un ensemble).
Variable propositionnelleUne variable est représentée par un symbole qui définit une quantité qui peut prendre n'importe quelle valeur dans un ensemble de valeurs. En logique mathématique, une variable propositionnelle est un symbole qui désigne une proposition dans le calcul propositionnel, c'est une variable qui peut être remplacée par une proposition vraie ou fausse ou par une formule qui est elle-même composée de variables propositionnelles et donc qui peut prendre parfois la valeur vraie et parfois la valeur faux.
Constraint Handling RulesConstraint Handling Rules (CHR) is a declarative, rule-based programming language, introduced in 1991 by Thom Frühwirth at the time with European Computer-Industry Research Centre (ECRC) in Munich, Germany. Originally intended for constraint programming, CHR finds applications in grammar induction, type systems, abductive reasoning, multi-agent systems, natural language processing, compilation, scheduling, spatial-temporal reasoning, testing, and verification.
Nombre cardinalvignette|Le nombre cardinal des deux ensembles X et Y est 4 En linguistique, les nombres entiers naturels zéro, un, deux, trois, etc. s’appellent des adjectifs numéraux cardinaux. En théorie des ensembles, le nombre cardinal ou cardinal d'un ensemble E (fini ou infini) est, intuitivement, le « nombre » d'éléments lui appartenant. On peut définir formellement ce « nombre » comme la classe de tous les ensembles équipotents à E (c'est-à-dire en bijection avec E), ou, de manière fort différente, comme le plus petit ordinal équipotent à E.
Union (mathématiques)Dans la théorie des ensembles, l'union ou réunion est une opération ensembliste de base. En algèbre booléenne, l'union est associée à l'opérateur logique ou inclusif et est notée ∪. L'union de deux ensembles A et B est l'ensemble qui contient tous les éléments qui appartiennent à A ou appartiennent à B. On la note A ∪ B et on la dit « A union B » Formellement : Par exemple l'union des ensembles A = {1, 2, 3} et B = {2, 3, 4} est l'ensemble {1, 2, 3, 4}.
Logique paracohérenteEn logique mathématique, une logique paracohérente (aussi appelé logique paraconsistante) est un système logique qui tolère les contradictions, contrairement au système de la logique classique. Les logiques tolérantes aux incohérences sont étudiées depuis au moins 1910, avec des esquisses remontant sans doute au temps d'Aristote. Le terme paracohérent - (à côté du cohérent, paraconsistent en anglais) - n'a été employé qu'après 1976 par le philosophe péruvien .
Independence-friendly logicIndependence-friendly logic (IF logic; proposed by Jaakko Hintikka and Gabriel Sandu in 1989) is an extension of classical first-order logic (FOL) by means of slashed quantifiers of the form and , where is a finite set of variables. The intended reading of is "there is a which is functionally independent from the variables in ". IF logic allows one to express more general patterns of dependence between variables than those which are implicit in first-order logic.
Uninterpreted functionIn mathematical logic, an uninterpreted function or function symbol is one that has no other property than its name and n-ary form. Function symbols are used, together with constants and variables, to form terms. The theory of uninterpreted functions is also sometimes called the free theory, because it is freely generated, and thus a free object, or the empty theory, being the theory having an empty set of sentences (in analogy to an initial algebra). Theories with a non-empty set of equations are known as equational theories.