Problème du sac à dosEn algorithmique, le problème du sac à dos, parfois noté (KP) (de l'anglais Knapsack Problem) est un problème d'optimisation combinatoire. Ce problème classique en informatique et en mathématiques modélise une situation analogue au remplissage d'un sac à dos. Il consiste à trouver la combinaison d'éléments la plus précieuse à inclure dans un sac à dos, étant donné un ensemble d'éléments décrits par leurs poids et valeurs.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Aide au diagnostic médicalUne aide au diagnostic médical (ou diagnostic assisté par ordinateur) est un système d'aide à la décision médicale utilisé dans le processus du diagnostic médical, qui est composé d'une base de données et d'un moteur de recherche. Il donne accès aux informations de la base de données, et peut proposer des diagnostics différentiels en fonction de données pré-renseignées après un examen clinique, des estimations pronostiques, ou signaler des informations manquantes pour établir un diagnostic. Catégorie:Base
Article de revueUn article de revue (ou « article de synthèse » ou « article de revue de littérature ») est un type particulier d'article publié dans une revue scientifique dont le principe est de dresser un état des lieux dans un domaine particulier de la recherche et de dégager les directions particulières prises dans ce domaine. Le contenu principal d'un article de revue est une revue de littérature (ou revue de la littérature), c'est-à-dire une méthode de recherche d'information scientifique structurée, réplicable et ciblée sur un sujet de recherche spécifique.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Classification naïve bayésiennevignette|Exemple de classification naïve bayésienne pour un ensemble de données dont le nombre augmente avec le temps. La classification naïve bayésienne est un type de classification bayésienne probabiliste simple basée sur le théorème de Bayes avec une forte indépendance (dite naïve) des hypothèses. Elle met en œuvre un classifieur bayésien naïf, ou classifieur naïf de Bayes, appartenant à la famille des classifieurs linéaires. Un terme plus approprié pour le modèle probabiliste sous-jacent pourrait être « modèle à caractéristiques statistiquement indépendantes ».
Problème de décisionEn informatique théorique, un problème de décision est une question mathématique dont la réponse est soit « oui », soit « non ». Les logiciens s'y sont intéressés à cause de l'existence ou de la non-existence d'un algorithme répondant à la question posée. Les problèmes de décision interviennent dans deux domaines de la logique : la théorie de la calculabilité et la théorie de la complexité. Parmi les problèmes de décision citons par exemple le problème de l'arrêt, le problème de correspondance de Post ou le dernier théorème de Fermat.
Reconnaissance de formesthumb|Reconnaissance de forme à partir de modélisation en 3D La reconnaissance de formes (ou parfois reconnaissance de motifs) est un ensemble de techniques et méthodes visant à identifier des régularités informatiques à partir de données brutes afin de prendre une décision dépendant de la catégorie attribuée à ce motif. On considère que c'est une branche de l'intelligence artificielle qui fait largement appel aux techniques d'apprentissage automatique et aux statistiques.
Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.
Apprentissage actifL’apprentissage actif est un modèle d’apprentissage semi-supervisé où un oracle intervient au cours du processus. Plus précisément, contrairement au cadre classique où les données sont connues et imposées, en apprentissage actif, c'est l'algorithme d'apprentissage qui demande des informations pour des données précises. Cette technique repose sur l'hypothèse que l’acquisition de données non étiquetées est beaucoup moins coûteuse que celle de données étiquetées.