Réseau socialEn sciences humaines et sociales, l'expression réseau social désigne un agencement de liens entre des individus ou des organisations, constituant un groupement qui a un sens : la famille, les collègues, un groupe d'amis, une communauté, etc. L'anthropologue australien John Arundel Barnes a introduit l'expression en 1954. L'analyse des réseaux sociaux est devenue une spécialité universitaire dans le champ de la sociologie, se fondant sur la théorie des réseaux et l'usage des graphes.
Marche aléatoireEn mathématiques, en économie et en physique théorique, une marche aléatoire est un modèle mathématique d'un système possédant une dynamique discrète composée d'une succession de pas aléatoires, ou effectués « au hasard ». On emploie également fréquemment les expressions marche au hasard, promenade aléatoire ou random walk en anglais. Ces pas aléatoires sont de plus totalement décorrélés les uns des autres ; cette dernière propriété, fondamentale, est appelée caractère markovien du processus, du nom du mathématicien Markov.
Générateur de nombres aléatoiresUn générateur de nombres aléatoires, random number generator (RNG) en anglais, est un dispositif capable de produire une suite de nombres pour lesquels il n'existe aucun lien calculable entre un nombre et ses prédécesseurs, de façon que cette séquence puisse être appelée « suite de nombres aléatoires ». Par extension, on utilise ce terme pour désigner des générateurs de nombres pseudo aléatoires, pour lesquels ce lien calculable existe, mais ne peut pas « facilement » être déduit.
Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Réseau invariant d'échelleUn réseau invariant d'échelle (ou réseau sans échelle, ou encore scale-free network en anglais) est un réseau dont les degrés suivent une loi de puissance. Plus explicitement, dans un tel réseau, la proportion de nœuds de degré k est proportionnelle à pour grand, où est un paramètre (situé entre 2 et 3 pour la plupart des applications). Beaucoup de réseaux, comme le réseau du web, les réseaux sociaux et les réseaux biologiques semblent se comporter comme des réseaux invariants d'échelle, d'où l'importance de ce modèle.
Small-world networkA small-world network is a mathematical graph in which most nodes are not neighbors of one another, but the neighbors of any given node are likely to be neighbors of each other. Due to this, most neighboring nodes can be reached from every other node by a small number of hops or steps. Specifically, a small-world network is defined to be a network where the typical distance L between two randomly chosen nodes (the number of steps required) grows proportionally to the logarithm of the number of nodes N in the network, that is: while the global clustering coefficient is not small.
Compound probability distributionIn probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables. If the parameter is a scale parameter, the resulting mixture is also called a scale mixture.
Processus de Poissonvignette|Schéma expliquant le processus de Poisson Un processus de Poisson, nommé d'après le mathématicien français Siméon Denis Poisson et la loi du même nom, est un processus de comptage classique dont l'équivalent discret est la somme d'un processus de Bernoulli. C'est le plus simple et le plus utilisé des processus modélisant une . C'est un processus de Markov, et même le plus simple des processus de naissance et de mort (ici un processus de naissance pur).
Mesure aléatoireEn théorie des probabilités, une mesure aléatoire est une détermination de mesure d'un élément aléatoire. Soit X un espace métrique séparable complet et la tribu de son ensemble de Borel. Une mesure de Borel μ sur X est finie si μ (A) < ∞ pour chaque ensemble A borélien limité. Soit l'espace de toutes les mesures finies sur . Soit un espace probabilisé. Alors, une mesure aléatoire des cartes de cet espace de probabilité à l'espace mesurable .
Six degrés de séparationLes six degrés de séparation (aussi appelée théorie des six poignées de main) est une théorie établie par le Hongrois Frigyes Karinthy en 1929 qui évoque la possibilité que toute personne sur le globe peut être reliée à n'importe quelle autre, au travers d'une chaîne de relations individuelles comprenant au plus six maillons. Avec le développement des technologies de l’information et de la communication, le degré de séparation a été mesuré sur le réseau social Facebook en 2011, en 2016, et sur l’échange de plusieurs milliards de messages instantanés étudiés en 2008 par et Jure Leskovec, chercheurs chez Microsoft, en analysant des discussions de Windows Live Messenger.