Microscope confocalvignette|upright=2|Schéma de principe du microscope confocal par Marvin Minsky en 1957. vignette|upright=1.5|Principe de fonctionnement du microscope à fluorescence puis du microscope confocal. Un microscope confocal, appelé plus rarement microscope monofocal, est un microscope optique qui a la propriété de réaliser des images de très faible profondeur de champ (environ ) appelées « sections optiques ».
Microscopie à super-résolutionLa microscopie à super-résolution est un ensemble de techniques permettant d'imager en microscopie optique des objets à une résolution à l’échelle nanométrique. Elle se démarque par le fait que la résolution obtenue n'est plus limitée par le phénomène de diffraction. Du fait de la diffraction de la lumière, la résolution d’un microscope optique conventionnel est en principe limitée, indépendamment du capteur utilisé et des aberrations ou imperfections des lentilles.
MicroscopieLa microscopie est un ensemble de techniques d' des objets de petites dimensions. Quelle que soit la technique employée, l'appareil utilisé pour rendre possible cette observation est appelé un . Des mots grecs anciens mikros et skopein signifiant respectivement « petit » et « examiner », la microscopie désigne étymologiquement l'observation d'objets invisibles à l'œil nu. On distingue principalement trois types de microscopies : la microscopie optique, la microscopie électronique et la microscopie à sonde locale.
DéconvolutionEn mathématiques, la déconvolution est un procédé algorithmique destiné à inverser les effets de la convolution. Le concept de déconvolution est largement utilisé en traitement du signal et , notamment en microscopie et astronomie. Le problème est de déterminer la solution f d'une équation de la forme : On note ici par h un signal tel qu'il est acquis et f le signal que l'on désire estimer ou restaurer, mais qui a été convolué par une réponse impulsionnelle g lors de l'acquisition.
Segmentation d'imageLa segmentation d'image est une opération de s consistant à détecter et rassembler les pixels suivant des critères, notamment d'intensité ou spatiaux, l'image apparaissant ainsi formée de régions uniformes. La segmentation peut par exemple montrer les objets en les distinguant du fond avec netteté. Dans les cas où les critères divisent les pixels en deux ensembles, le traitement est une binarisation. Des algorithmes sont écrits comme substitut aux connaissances de haut niveau que l'homme mobilise dans son identification des objets et structures.
Medical image computingMedical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. The main goal of MIC is to extract clinically relevant information or knowledge from medical images.
Analyse d'imageL'analyse d'image est la reconnaissance des éléments et des informations contenus dans une . Elle peut être automatisée lorsque l'image est enregistrée sous forme numérique, au moyen d'outils informatiques. Les tâches relevant de l'analyse d'image sont multiples, depuis la lecture de codes-barres, jusqu'à la reconnaissance faciale. L'analyse d'image intervient également dans le domaine de l'art et du graphisme, pour l'interprétation des compositions et signifiants.
Optical sectioningOptical sectioning is the process by which a suitably designed microscope can produce clear images of focal planes deep within a thick sample. This is used to reduce the need for thin sectioning using instruments such as the microtome. Many different techniques for optical sectioning are used and several microscopy techniques are specifically designed to improve the quality of optical sectioning. Good optical sectioning, often referred to as good depth or z resolution, is popular in modern microscopy as it allows the three-dimensional reconstruction of a sample from images captured at different focal planes.
Microscopie par excitation à deux photonsvignette|350px|Microscopie par excitation à 2 photons de l'intestin d'une souris. Rouge: actine. Vert: noyaux des cellules. Bleu: mucus des cellules caliciformes. Obtenu à 780 nm avec un laser Ti-sapph. La microscopie par excitation à deux photons (M2P, TPEF ou 2PEF en anglais, aussi appelée « microscopie 2 photons ») est une technique d'imagerie optique combinant les principes de microscopie à fluorescence et de l'absorption à deux photons, faisant partie de la famille des microscopies multiphotons.
Object co-segmentationIn computer vision, object co-segmentation is a special case of , which is defined as jointly segmenting semantically similar objects in multiple images or video frames. It is often challenging to extract segmentation masks of a target/object from a noisy collection of images or video frames, which involves object discovery coupled with . A noisy collection implies that the object/target is present sporadically in a set of images or the object/target disappears intermittently throughout the video of interest.