Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Numerical linear algebraNumerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
ApproximationUne approximation est une représentation imprécise ayant toutefois un lien étroit avec la quantité ou l’objet qu’elle reflète : approximation d’un nombre (de π par 3,14, de la vitesse instantanée d’un véhicule par sa vitesse moyenne entre deux points), d’une fonction mathématique, d’une solution d’un problème d’optimisation, d’une forme géométrique, d’une loi physique. Lorsqu’une partie de l’information nécessaire fait défaut, une approximation peut se substituer à une représentation exacte.
Calcul stochastiqueLe calcul est l’étude des phénomènes aléatoires dépendant du temps. À ce titre, c'est une extension de la théorie des probabilités. Ne pas confondre avec la technique des calculateurs stochastiques. Le domaine d’application du calcul stochastique comprend la mécanique quantique, le traitement du signal, la chimie, les mathématiques financières, la météorologie et même la musique. Un processus aléatoire est une famille de variables aléatoires indexée par un sous-ensemble de ou , souvent assimilé au temps (voir aussi Processus stochastique).
Système biologiqueUn système biologique est un réseau complexe d'entités biologiquement pertinentes. L'organisation biologique s'étend sur plusieurs échelles et est déterminée en fonction de différentes structures selon la nature du système. Des exemples de systèmes biologiques à l'échelle macro sont les populations d'organismes. À l'échelle des organes et des tissus chez les mammifères et autres animaux, on trouve par exemple le système circulatoire, le système respiratoire et le système nerveux.
StochastiqueLe mot stochastique est synonyme d', en référence au hasard et s’oppose par définition au déterminisme. Stochastique est un terme d'origine grecque qui signifie « basé sur la conjecture ». En français, il est couramment utilisé pour décrire des phénomènes aléatoires ou imprévisibles. Dans les mathématiques et la statistique, « stochastique » fait référence à des processus qui sont déterminés par des séquences de mouvements aléatoires. Cela inclut tout ce qui est aléatoire ou imprévisible en fonction des informations actuellement disponibles.
Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Réseau métaboliqueUn réseau métabolique est l'ensemble des processus métaboliques et physiques qui déterminent les propriétés physiologiques et biochimiques d'une cellule. Par conséquent, ces réseaux comprennent les réactions chimiques du métabolisme, les voies métaboliques, ainsi que les interactions régulatrices qui guident ces réactions. Avec le séquençage complet des génomes, il est maintenant possible de reconstituer le réseau de réactions biochimiques dans de nombreux organismes, des bactéries aux humains.
Traitement du signalLe traitement du signal est la discipline qui développe et étudie les techniques de traitement, d'analyse et d' des . Parmi les types d'opérations possibles sur ces signaux, on peut dénoter le contrôle, le filtrage, la compression et la transmission de données, la réduction du bruit, la déconvolution, la prédiction, l'identification, la classification Bien que cette discipline trouve son origine dans les sciences de l'ingénieur (particulièrement l'électronique et l'automatique), elle fait aujourd'hui largement appel à de nombreux domaines des mathématiques, comme la , les processus stochastiques, les espaces vectoriels et l'algèbre linéaire et des mathématiques appliquées, notamment la théorie de l'information, l'optimisation ou encore l'analyse numérique.