Statistique exhaustiveLes statistiques exhaustives sont liées à la notion d'information et en particulier à l'information de Fisher. Elles servent entre autres à améliorer des estimateurs grâce à l'usage du théorème de Rao-Blackwell et du théorème de Lehmann-Scheffé. Intuitivement, parler d'une statistique exhaustive revient à dire que cette statistique contient l'ensemble de l'information sur le(s) paramètre(s) de la loi de probabilité. Soit un vecteur d'observation de taille , dont les composantes sont indépendantes et identiquement distribués (iid).
Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Resampling (statistics)In statistics, resampling is the creation of new samples based on one observed sample. Resampling methods are: Permutation tests (also re-randomization tests) Bootstrapping Cross validation Permutation test Permutation tests rely on resampling the original data assuming the null hypothesis. Based on the resampled data it can be concluded how likely the original data is to occur under the null hypothesis.
Régression de PoissonEn statistique, la régression de Poisson est un modèle linéaire généralisé utilisé pour les données de comptage et les tableaux de contingence. Cette régression suppose que la variable réponse Y suit une loi de Poisson et que le logarithme de son espérance peut être modélisé par une combinaison linéaire de paramètre inconnus. Soit un vecteur de variables indépendantes, et la variable que l'on cherche à prédire. Réaliser une régression de Poisson revient à supposer que suit une loi de Poisson de paramètre , avec et les paramètres de la régression à estimer, et le produit scalaire standard de .
Least-angle regressionIn statistics, least-angle regression (LARS) is an algorithm for fitting linear regression models to high-dimensional data, developed by Bradley Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani. Suppose we expect a response variable to be determined by a linear combination of a subset of potential covariates. Then the LARS algorithm provides a means of producing an estimate of which variables to include, as well as their coefficients.
Qualité de l'ajustementThe goodness of fit of a statistical model describes how well it fits a set of observations. Measures of goodness of fit typically summarize the discrepancy between observed values and the values expected under the model in question. Such measures can be used in statistical hypothesis testing, e.g. to test for normality of residuals, to test whether two samples are drawn from identical distributions (see Kolmogorov–Smirnov test), or whether outcome frequencies follow a specified distribution (see Pearson's chi-square test).
Moyenne mobileLa moyenne mobile, ou moyenne glissante, est un type de moyenne statistique utilisée pour analyser des séries ordonnées de données, le plus souvent des séries temporelles, en supprimant les fluctuations transitoires de façon à en souligner les tendances à plus long terme. Cette moyenne est dite mobile parce qu'elle est recalculée de façon continue, en utilisant à chaque calcul un sous-ensemble d'éléments dans lequel un nouvel élément remplace le plus ancien ou s'ajoute au sous-ensemble.
Likelihoodist statisticsLikelihoodist statistics or likelihoodism is an approach to statistics that exclusively or primarily uses the likelihood function. Likelihoodist statistics is a more minor school than the main approaches of Bayesian statistics and frequentist statistics, but has some adherents and applications. The central idea of likelihoodism is the likelihood principle: data are interpreted as evidence, and the strength of the evidence is measured by the likelihood function.
Nuisance parameterIn statistics, a nuisance parameter is any parameter which is unspecified but which must be accounted for in the hypothesis testing of the parameters which are of interest. The classic example of a nuisance parameter comes from the normal distribution, a member of the location–scale family. For at least one normal distribution, the variance(s), σ2 is often not specified or known, but one desires to hypothesis test on the mean(s).
Fonction poidsUne fonction poids est un outil mathématique pour le calcul de sommes, d'intégrales ou de moyennes dans lesquelles certains éléments auront plus d'importance ou d'influence que d'autres sur le même ensemble. On parle alors pour le résultat de somme pondérée ou de moyenne pondérée. Les fonctions poids sont couramment utilisées en statistique et en analyse, et peuvent être rapprochées du concept de mesure. Le concept a été étendu pour développer le « calcul différentiel pondéré » et le « méta-calcul différentiel ».