Concept

Resampling (statistics)

Résumé
In statistics, resampling is the creation of new samples based on one observed sample. Resampling methods are: Permutation tests (also re-randomization tests) Bootstrapping Cross validation Permutation test Permutation tests rely on resampling the original data assuming the null hypothesis. Based on the resampled data it can be concluded how likely the original data is to occur under the null hypothesis. Bootstrap (statistics) Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio, correlation coefficient or regression coefficient. It has been called the plug-in principle, as it is the method of estimation of functionals of a population distribution by evaluating the same functionals at the empirical distribution based on a sample. For example, when estimating the population mean, this method uses the sample mean; to estimate the population median, it uses the sample median; to estimate the population regression line, it uses the sample regression line. It may also be used for constructing hypothesis tests. It is often used as a robust alternative to inference based on parametric assumptions when those assumptions are in doubt, or where parametric inference is impossible or requires very complicated formulas for the calculation of standard errors. Bootstrapping techniques are also used in the updating-selection transitions of particle filters, genetic type algorithms and related resample/reconfiguration Monte Carlo methods used in computational physics. In this context, the bootstrap is used to replace sequentially empirical weighted probability measures by empirical measures. The bootstrap allows to replace the samples with low weights by copies of the samples with high weights. Cross-validation (statistics) Cross-validation is a statistical method for validating a predictive model.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (27)
MATH-412: Statistical machine learning
A course on statistical machine learning for supervised and unsupervised learning
MATH-517: Statistical computation and visualisation
The course will provide the opportunity to tackle real world problems requiring advanced computational skills and visualisation techniques to complement statistical thinking. Students will practice pr
Afficher plus
Séances de cours associées (48)
Essais d'hypothèses : aperçu statistique
Fournit un aperçu des tests d'hypothèses, des valeurs p, des tests Wald et des statistiques non paramétriques.
Évaluation du modèle et réglage de l'hyperparamètre
Explore l'évaluation des modèles, le réglage hyperparamétrique et les stratégies de rééchantillonnage dans l'apprentissage automatique.
Réseaux neuronaux multicouches: Deep Learning
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond.
Afficher plus
Publications associées (127)

Bootstrapping smooth conformal defects in Chern-Simons-matter theories

Barak Gabai, Amit Sever

The expectation value of a smooth conformal line defect in a CFT is a conformal invariant functional of its path in space-time. For example, in large N holographic theories, these fundamental observables are dual to the open-string partition function in Ad ...
New York2024

Peak Value-at-Risk Estimation for Stochastic Differential Equations using Occupation Measures

Matteo Raphael Tacchi

This paper proposes an algorithm to upper-bound maximal quantile statistics of a state function over the course of a Stochastic Differential Equation (SDE) system execution. This chance-peak problem is posed as a nonconvex program aiming to maximize the Va ...
New York2023

Spatial Distributions of Diarrheal Cases in Relation to Housing Conditions in Informal Settlements: A Cross-Sectional Study in Abidjan, Côte d’Ivoire

Jérôme Chenal, Vitor Pessoa Colombo, Jürg Utzinger

In addition to individual practices and access to water, sanitation, and hygiene (WASH) facilities, housing conditions may also be associated with the risk of diarrhea. Our study embraced a broad approach to health determinants by looking at housing depriv ...
2023
Afficher plus
Concepts associés (16)
Permutation test
A permutation test (also called re-randomization test) is an exact statistical hypothesis test making use of the proof by contradiction. A permutation test involves two or more samples. The null hypothesis is that all samples come from the same distribution . Under the null hypothesis, the distribution of the test statistic is obtained by calculating all possible values of the test statistic under possible rearrangements of the observed data. Permutation tests are, therefore, a form of resampling.
Sampling distribution
In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic. If an arbitrarily large number of samples, each involving multiple observations (data points), were separately used in order to compute one value of a statistic (such as, for example, the sample mean or sample variance) for each sample, then the sampling distribution is the probability distribution of the values that the statistic takes on.
Bootstrap (statistiques)
En statistiques, les techniques de bootstrap sont des méthodes d'inférence statistique basées sur la réplication multiple des données à partir du jeu de données étudié, selon les techniques de rééchantillonnage. Elles datent de la fin des années 1970, époque où la possibilité de calculs informatiques intensifs devient abordable. On calculait depuis près d'un siècle des estimations : mesures de dispersion (variance, écart-type), intervalles de confiance, tables de décision pour des tests d'hypothèse, etc.
Afficher plus