DislocationEn science des matériaux, une dislocation est un défaut linéaire (c'est-à-dire non-ponctuel), correspondant à une discontinuité dans l'organisation de la structure cristalline. Une dislocation peut être vue simplement comme un "quantum" de déformation élémentaire au sein d'un cristal possédant un champ de contrainte à longue distance. Elle est caractérisée par : la direction de sa ligne ; un vecteur appelé « vecteur de Burgers » dont la norme représente l'amplitude de la déformation qu'elle engendre.
Cross slipIn materials science, cross slip is the process by which a screw dislocation moves from one slip plane to another due to local stresses. It allows non-planar movement of screw dislocations. Non-planar movement of edge dislocations is achieved through climb. Since the Burgers vector of a perfect screw dislocation is parallel to the dislocation line, it has an infinite number of possible slip planes (planes containing the dislocation line and the Burgers vector), unlike an edge or mixed dislocation, which has a unique slip plane.
Écrouissagedroite|vignette|Laminage : l'amincissement provoque un durcissement du métal. Lécrouissage d'un métal est le durcissement d'un métal ductile sous l'effet de sa déformation plastique (déformation permanente). Ce mécanisme de durcissement explique en grande partie les différences de tenues et résistance entre les pièces métalliques obtenues par corroyage (c'est-à-dire par déformation plastique : laminage, tréfilage, forgeage) et les pièces de fonderie (simplement coulées dans un moule).
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Burgers vectorIn materials science, the Burgers vector, named after Dutch physicist Jan Burgers, is a vector, often denoted as b, that represents the magnitude and direction of the lattice distortion resulting from a dislocation in a crystal lattice. The vector's magnitude and direction is best understood when the dislocation-bearing crystal structure is first visualized without the dislocation, that is, the perfect crystal structure.
Géométrie euclidienneLa géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.
Slip (materials science)In materials science, slip is the large displacement of one part of a crystal relative to another part along crystallographic planes and directions. Slip occurs by the passage of dislocations on close/packed planes, which are planes containing the greatest number of atoms per area and in close-packed directions (most atoms per length). Close-packed planes are known as slip or glide planes. A slip system describes the set of symmetrically identical slip planes and associated family of slip directions for which dislocation motion can easily occur and lead to plastic deformation.
DuctilitéLa ductilité est la capacité d'un matériau à se déformer plastiquement sans se rompre. La rupture se fait lorsqu'un défaut (fissure ou cavité) devient critique et se propage. Un matériau qui présente une grande déformation plastique à rupture est dit ductile, sinon il est dit fragile. C'est une propriété dite « purement géométrique » : elle ne caractérise qu'un allongement à la rupture (sans unité, ou l'allongement en mètre si la longueur pour l'essai de ductilité est normalisée), indépendamment de l'énergie ou de la contrainte nécessaire à cette rupture.
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Géométrie non euclidienneLa géométrie non euclidienne (GNE) est, en mathématiques, une théorie géométrique ayant recours aux axiomes et postulats posés par Euclide dans les Éléments, sauf le postulat des parallèles. Les différentes géométries non euclidiennes sont issues initialement de la volonté de démontrer la proposition du cinquième postulat, qui apparaissait peu satisfaisant en tant que postulat car trop complexe et peut-être redondant avec les autres postulats).