Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Balancing a matrix by a simple and accurate similarity transformation can improve the speed and accuracy of numerical methods for computing eigenvalues. We describe balancing strategies for a large and sparse Hamiltonian matrix H. It is first shown how to permute H to irreducible form while retaining its structure. This form can be used to decompose the Hamiltonian eigenproblem into smaller-sized problems. Next, we discuss the computation of a symplectic scaling matrix D so that the norm of D-1 H D is reduced. The considered scaling algorithm is solely based on matrix-vector products and thus particularly suitable if the elements of H are not explicitly given. The merits of balancing for eigenvalue computations are illustrated by several practically relevant examples. (c) 2004 Elsevier Inc. All rights reserved.
Daniel Kressner, Alice Cortinovis
Daniel Kressner, Ivana Sain Glibic