Théorème fondamental des fonctions symétriquesEn mathématiques, et plus particulièrement en algèbre commutative, le théorème fondamental des fonctions symétriques, souvent appelé « théorème fondamental des polynômes symétriques » ou « théorème de Newton », stipule que tout polynôme symétrique en n indéterminées à coefficients dans un anneau (commutatif) A s'exprime de façon unique par une fonction polynomiale des n polynômes symétriques élémentaires. Autrement dit, les n polynômes symétriques élémentaires forment une partie génératrice de l'algèbre des polynômes symétriques en n indéterminées sur A et sont algébriquement indépendants sur A.
Matrice de HessenbergEn algèbre linéaire, une matrice de Hessenberg est une matrice carrée qui est « presque » triangulaire. Pour être exact, dans une matrice de Hessenberg dite « supérieure », tous les éléments se trouvant en dessous de la première sous-diagonale (i.e., la diagonale en dessous de la diagonale principale) sont nuls, et dans une matrice de Hessenberg dite « inférieure », tous les éléments situés au-dessus de la première super-diagonale (i.e., la diagonale au-dessus de la diagonale principale) sont nuls.
Application lipschitzienneEn analyse mathématique, une application lipschitzienne (du nom de Rudolf Lipschitz) est une application possédant une certaine propriété de régularité qui est plus forte que la continuité. Intuitivement, c'est une fonction qui est limitée dans sa manière d'évoluer. Tout segment reliant deux points du graphe d'une telle fonction aura une pente inférieure, en valeur absolue, à une constante appelée constante de Lipschitz. Les fonctions lipschitziennes sont un cas particulier de fonctions höldériennes.
Nombre complexeEn mathématiques, l'ensemble des nombres complexes est actuellement défini comme une extension de l'ensemble des nombres réels, contenant en particulier un nombre imaginaire noté i tel que i = −1. Le carré de (−i) est aussi égal à −1 : (−i) = −1. Tout nombre complexe peut s'écrire sous la forme x + i y où x et y sont des nombres réels. Les nombres complexes ont été progressivement introduit au par l’école mathématique italienne (Jérôme Cardan, Raphaël Bombelli, Tartaglia) afin d'exprimer les solutions des équations du troisième degré en toute généralité par les formules de Cardan, en utilisant notamment des « nombres » de carré négatif.
Inverse iterationIn numerical analysis, inverse iteration (also known as the inverse power method) is an iterative eigenvalue algorithm. It allows one to find an approximate eigenvector when an approximation to a corresponding eigenvalue is already known. The method is conceptually similar to the power method. It appears to have originally been developed to compute resonance frequencies in the field of structural mechanics.
Méthode de la puissance itéréeEn mathématiques, la méthode de la puissance itérée ou méthode des puissances est un algorithme pour calculer la valeur propre dominante d'une matrice. Bien que cet algorithme soit simple à mettre en œuvre et populaire, il ne converge pas très vite. Étant donné une matrice A, on cherche une valeur propre de plus grand module et un vecteur propre associé. Le calcul de valeurs propres n'est en général pas possible directement (avec une formule close) : on utilise alors des méthodes itératives, et la méthode des puissances est la plus simple d'entre elles.
Covariance matrixIn probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions.
Condition de HölderEn analyse, la continuité höldérienne ou condition de Hölder — nommée d'après le mathématicien allemand Otto Hölder — est une condition suffisante, généralisant celle de Lipschitz, pour qu’une application définie entre deux espaces métriques soit uniformément continue. La définition s’applique donc en particulier pour les fonctions d’une variable réelle. Si (X, d) et (Y, d) sont deux espaces métriques, une fonction f : X → Y est dite a-höldérienne s’il existe une constante C telle que pour tous x, y ∈ X : La continuité höldérienne d’une fonction dépend donc d’un paramètre a ∈ ]0, 1].
Faisceau (géométrie)En géométrie, un faisceau est une famille d'objets géométriques partageant une propriété commune, par exemple l'ensemble de droites passant par un même point dans le plan, ou l'ensemble de cercles passant par deux points dans le plan. Si la définition d'un faisceau est assez vague, la caractéristique commune est que le faisceau est complètement déterminé par deux de ses éléments. De façon analogue, un ensemble d'objets géométriques déterminés par trois éléments quelconques est appelé un fibré.
Symmetric probability distributionIn statistics, a symmetric probability distribution is a probability distribution—an assignment of probabilities to possible occurrences—which is unchanged when its probability density function (for continuous probability distribution) or probability mass function (for discrete random variables) is reflected around a vertical line at some value of the random variable represented by the distribution. This vertical line is the line of symmetry of the distribution.