RigourRigour (British English) or rigor (American English; see spelling differences) describes a condition of stiffness or strictness. These constraints may be environmentally imposed, such as "the rigours of famine"; logically imposed, such as mathematical proofs which must maintain consistent answers; or socially imposed, such as the process of defining ethics and law. "Rigour" comes to English through old French (13th c.
Topologie discrèteEn mathématiques, plus précisément en topologie, la topologie discrète sur un ensemble est une structure d'espace topologique où, de façon intuitive, tous les points sont « isolés » les uns des autres. Soit X un ensemble. L'ensemble des parties de X définit une topologie sur X appelée topologie discrète. X muni de cette topologie est alors appelé espace discret. On dit qu'une partie A d'un espace topologique X est un ensemble discret lorsque la topologie induite sur A est la topologie discrète.
Triplet de GelfandEn analyse fonctionnelle, le triplet de Gelfand (aussi triplet de Banach-Gelfand ou triade hilbertienne ou rigged Hilbert space) est un espace-triplet consistant en un espace de Hilbert , un espace de Banach (ou plus généralement un espace vectoriel topologique) et son dual topologique . L'espace est choisi tel que soit un sous-espace dense dans et que son inclusion soitcontinue. Cette construction a l'avantage que les éléments de peuvent être exprimés comme des éléments de l'espace dual en utilisant le théorème de représentation de Fréchet-Riesz.
Opérateur hamiltonienL’opérateur de Hamilton, opérateur hamiltonien ou tout simplement hamiltonien est un opérateur mathématique possédant de nombreuses applications dans divers domaines de la physique. D'après Jérôme Pérez, l'opérateur hamiltonien a été développé en 1811 par Joseph-Louis Lagrange alors qu'Hamilton n'avait que 6 ans. Lagrange a explicitement écrit : formule dans laquelle faisait référence à Christiaan Huygens et qu'il aurait appelé Huygensien.
Point isoléEn topologie, un point x d'un espace topologique E est dit isolé si le singleton {x} est un ouvert. Formulations équivalentes : {x} est un voisinage de x ; x n'est pas adhérent à E{x} (x n'est pas un « point d'accumulation »). En particulier, si E est un espace métrique (par exemple une partie d'un espace euclidien), x est un point isolé de E s'il existe une boule ouverte centrée en x qui ne contient pas d'autre point de E. Un espace topologique dans lequel tout point est isolé est dit discret.
Équation du mouvementL'équation du mouvement est une équation mathématique décrivant le mouvement d'un objet physique. En général, l'équation du mouvement comprend l'accélération de l’objet en fonction de sa position, de sa vitesse, de sa masse et de toutes variables affectant l'une de celles-ci. Cette équation est surtout utilisée en mécanique classique et est normalement représentée sous la forme de coordonnées sphériques, coordonnées cylindriques ou coordonnées cartésiennes et respecte les lois du mouvement de Newton.
Langage formelUn langage formel, en mathématiques, en informatique et en linguistique, est un ensemble de mots. L'alphabet d'un langage formel est l'ensemble des symboles, lettres ou lexèmes qui servent à construire les mots du langage ; souvent, on suppose que cet alphabet est fini. La théorie des langages formels a pour objectif de décrire les langages formels. Les mots sont des suites d'éléments de cet alphabet ; les mots qui appartiennent à un langage formel particulier sont parfois appelés mots bien formés ou formules bien formées.
Théorie spectraleEn mathématiques, et plus particulièrement en analyse, une théorie spectrale est une théorie étendant à des opérateurs définis sur des espaces fonctionnels généraux la théorie élémentaire des valeurs propres et des vecteurs propres de matrices. Bien que ces idées viennent au départ du développement de l'algèbre linéaire, elles sont également liées à l'étude des fonctions analytiques, parce que les propriétés spectrales d'un opérateur sont liées à celles de fonctions analytiques sur les valeurs de son spectre.
Théorie de la perturbation (mécanique quantique)En mécanique quantique, la théorie de la perturbation, ou théorie des perturbations, est un ensemble de schémas d'approximations liée à une perturbation mathématique utilisée pour décrire un système quantique complexe de façon simplifiée. L'idée est de partir d'un système simple et d'appliquer graduellement un hamiltonien « perturbant » qui représente un écart léger par rapport à l'équilibre du système (perturbation).
Demi-groupeEn mathématiques, plus précisément en algèbre générale, un demi-groupe (ou semi-groupe) est une structure algébrique constituée d'un ensemble muni d'une loi de composition interne associative. Il est dit commutatif si sa loi est de plus commutative. Un demi-groupe est un magma associatif. Un monoïde est un demi-groupe unifère, c'est-à-dire possédant un élément neutre. L'ensemble des entiers naturels non nuls muni de l'addition est un demi-groupe. Tout monoïde est un demi-groupe. Tout groupe est un demi-groupe.