In mathematics, a rigged Hilbert space (Gelfand triple, nested Hilbert space, equipped Hilbert space) is a construction designed to link the distribution and square-integrable aspects of functional analysis. Such spaces were introduced to study spectral theory in the broad sense. They bring together the 'bound state' (eigenvector) and 'continuous spectrum', in one place.
A function such as
is an eigenfunction of the differential operator
on the real line R, but isn't square-integrable for the usual Borel measure on R. To properly consider this function as an eigenfunction requires some way of stepping outside the strict confines of the Hilbert space theory. This was supplied by the apparatus of Schwartz distributions, and a generalized eigenfunction theory was developed in the years after 1950.
The concept of rigged Hilbert space places this idea in an abstract functional-analytic framework. Formally, a rigged Hilbert space consists of a Hilbert space H, together with a subspace Φ which carries a finer topology, that is one for which the natural inclusion
is continuous. It is no loss to assume that Φ is dense in H for the Hilbert norm. We consider the inclusion of dual spaces H* in Φ*. The latter, dual to Φ in its 'test function' topology, is realised as a space of distributions or generalised functions of some sort, and the linear functionals on the subspace Φ of type
for v in H are faithfully represented as distributions (because we assume Φ dense).
Now by applying the Riesz representation theorem we can identify H* with H. Therefore, the definition of rigged Hilbert space is in terms of a sandwich:
The most significant examples are those for which Φ is a nuclear space; this comment is an abstract expression of the idea that Φ consists of test functions and Φ* of the corresponding distributions. Also, a simple example is given by Sobolev spaces: Here (in the simplest case of Sobolev spaces on )
where .
A rigged Hilbert space is a pair (H, Φ) with H a Hilbert space, Φ a dense subspace, such that Φ is given a topological vector space structure for which the inclusion map i is continuous.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
A theoretical and computational framework for signal sampling and approximation is presented from an intuitive geometric point of view. This lecture covers both mathematical and practical aspects of
We discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
En mathématiques, et plus particulièrement en analyse, une théorie spectrale est une théorie étendant à des opérateurs définis sur des espaces fonctionnels généraux la théorie élémentaire des valeurs propres et des vecteurs propres de matrices. Bien que ces idées viennent au départ du développement de l'algèbre linéaire, elles sont également liées à l'étude des fonctions analytiques, parce que les propriétés spectrales d'un opérateur sont liées à celles de fonctions analytiques sur les valeurs de son spectre.
vignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
vignette|Participants au Congrès Solvay de 1927 sur la mécanique quantique Cet article traite des postulats de la mécanique quantique. La description du monde microscopique que fournit la mécanique quantique s'appuie sur une vision radicalement nouvelle, et s'oppose en cela à la mécanique classique. Elle repose sur des postulats. S'il existe un très large consensus entre les physiciens sur la manière de réaliser les calculs qui permettent de rendre compte des phénomènes quantiques et de prévoir leur évolution, il n'existe pas en revanche de consensus sur une manière unique de les expliquer aux étudiants.
Explore la motivation pour étudier les concepts d'algèbre linéaire dans les modes propres des systèmes physiques et leur rôle central dans la mécanique quantique.
,
Local Hamiltonians of fermionic systems on a lattice can be mapped onto local qubit Hamiltonians. Maintaining the lo-cality of the operators comes at the ex-pense of increasing the Hilbert space with auxiliary degrees of freedom. In order to retrieve the l ...
VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF2023
We present TimeEvolver, a program for computing time evolution in a generic quantum system. It relies on well-known Krylov subspace techniques to tackle the problem of multiplying the exponential of a large sparse matrix iH, where His the Hamiltonian, with ...
ELSEVIER2022
The interior transmission eigenvalue problem is a system of partial differential equations equipped with Cauchy data on the boundary: the transmission conditions. This problem appears in the inverse scattering theory for inhomogeneous media when, for some ...