En mathématiques, plus précisément en topologie, la topologie discrète sur un ensemble est une structure d'espace topologique où, de façon intuitive, tous les points sont « isolés » les uns des autres.
Soit X un ensemble. L'ensemble des parties de X définit une topologie sur X appelée topologie discrète. X muni de cette topologie est alors appelé espace discret.
On dit qu'une partie A d'un espace topologique X est un ensemble discret lorsque la topologie induite sur A est la topologie discrète.
La topologie discrète est la topologie possédant le plus d'ouverts qu'il soit possible de définir sur un ensemble X, en d'autres termes la topologie la plus fine possible. En ce sens, c'est l'opposé de la topologie grossière.
Parmi les autres propriétés d'un espace topologique discret X :
Tout sous-ensemble de X est un ouvert-fermé ;
Une application de X dans un espace topologique quelconque est toujours continue ;
X est complètement métrisable, par exemple par la distance discrète, i.e. la distance d définie par : d(x,y) = 1 si x ≠ y, et d(x,x) = 0 ;
En conséquence, X satisfait à tous les axiomes de séparation. En particulier, X est séparé ;
Si X est précompact pour l'une des distances induisant sa topologie (en particulier si X est compact) alors il est fini ;
Les singletons de X forment une base de sa topologie ;
Tout point de X admet un système fondamental de voisinages dénombrable (et même : fini), donc X est « à bases dénombrables de voisinages » ; X est à base dénombrable d'ouverts si et seulement s'il est dénombrable ;
X est totalement discontinu ;
Si X n'est pas vide, il est « de deuxième catégorie », i.e. non maigre dans lui-même ;
Un produit fini d'espaces discrets est discret.
Les propriétés suivantes caractérisent les espaces discrets et les espaces finis discrets :
Un espace topologique X est discret si et seulement si tous ses singletons sont ouverts ;
Un espace topologique fini X est discret si et seulement s'il est séparé, auquel cas il est même compact.
Enfin :
Deux espaces topologiques discrets équipotents sont homéomorphes.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
A topological space is a space endowed with a notion of nearness. A metric space is an example of a topological space, where the concept of nearness is measured by a distance function. Within this abs
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
thumb|Richard Dedekind (1831 - 1916) a défini rigoureusement les nombres réels et posé les bases de leur étude topologique. La topologie de la droite réelle (ou topologie usuelle de R) est une structure mathématique qui donne, pour l'ensemble des nombres réels, des définitions précises aux notions de limite et de continuité. Historiquement, ces notions se sont développées autour de la notion de nombre (approcher des nombres comme la racine carrée de deux ou pi par d'autres plus « maniables ») et de la géométrie de la droite (à laquelle l'espace topologique des nombres réels peut être assimilé), du plan et de l'espace usuels.
En mathématiques, la topologie induite est une topologie définie sur toute partie Y d'un espace topologique X : c'est la trace sur Y de la topologie sur X. Autrement dit, l'ensemble des ouverts de Y (muni de la topologie induite) est : {O⋂Y | O ouvert de X}. Ou encore : les voisinages dans Y d'un point sont les traces sur Y de ses voisinages dans X. On dit alors que Y est un sous-espace de X. La topologie induite est souvent sous-entendue dans les énoncés de topologie : par exemple, lorsque l'on a un espace topologique X donné, une partie Y de X sera dite compacte si elle est compacte pour la topologie induite par X sur Y.
En mathématiques, dans un espace topologique E, un fermé est un sous-ensemble de E dont le complémentaire est un ouvert. Toute réunion d'une famille finie de fermés est un fermé (y compris l'ensemble vide ∅, qui est — par définition — la réunion de la famille vide). Toute intersection d'une famille (finie ou infinie) de fermés est un fermé (y compris l'espace E tout entier, qui est — par convention dans ce contexte — l'intersection de la famille vide).
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Ce cours contient les 7 premiers chapitres d'un cours d'analyse numérique donné aux étudiants bachelor de l'EPFL. Des outils de base sont décrits dans les chapitres 1 à 5. La résolution numérique d'éq
Explore les techniques avancées de discrétisation de l'espace dans l'analyse numérique pour résoudre les systèmes différentiels de manière efficace et précise.
Let K be a totally real number field of degree n >= 2. The inverse different of K gives rise to a lattice in Rn. We prove that the space of Schwartz Fourier eigenfunctions on R-n which vanish on the "component-wise square root" of this lattice, is infinite ...
EUROPEAN MATHEMATICAL SOC-EMS2022
, ,
Topological charge plays a significant role in a range of physical systems. In particular, observations of real-space topological objects in magnetic materials have been largely limited to skyrmions - states with a unitary topological charge. Recently, mor ...
A space-time adaptive algorithm is presented to solve the incompressible Navier-Stokes equations. Time discretization is performed with the BDF2 method while continuous, piecewise linear anisotropic finite elements are used for the space discretization. Th ...