Signature numériqueLa signature numérique est un mécanisme permettant d'authentifier l'auteur d'un document électronique et d'en garantir la non-répudiation, par analogie avec la signature manuscrite d'un document papier. Elle se différencie de la signature écrite par le fait qu'elle n'est pas visuelle, mais correspond à une suite de caractères. Elle ne doit pas être confondue avec la signature électronique manuscrite. Un mécanisme de signature numérique doit présenter les propriétés suivantes : Il doit permettre au lecteur d'un document d'identifier la personne ou l'organisme qui a apposé sa signature (propriété d'identification).
Electronic signatureAn electronic signature, or e-signature, is data that is logically associated with other data and which is used by the signatory to sign the associated data. This type of signature has the same legal standing as a handwritten signature as long as it adheres to the requirements of the specific regulation under which it was created (e.g., eIDAS in the European Union, NIST-DSS in the USA or ZertES in Switzerland). Electronic signatures are a legal concept distinct from digital signatures, a cryptographic mechanism often used to implement electronic signatures.
Théorème de factorisationEn mathématiques, le théorème de factorisation est un principe général qui permet de construire un morphisme d'une structure quotient dans un autre espace à partir d'un morphisme de vers , de façon à factoriser ce dernier par la surjection canonique de passage au quotient. Soit un ensemble muni d'une relation d'équivalence et la surjection canonique. L'unicité de g est immédiate et guide la preuve de son existence, dont voici plusieurs variantes : Preuve « naïve » : pour tout élément , on pose .
Morphisme de groupesUn morphisme de groupes ou homomorphisme de groupes est une application entre deux groupes qui respecte la structure de groupe. Plus précisément, c'est un morphisme de magmas d'un groupe dans un groupe , c'est-à-dire une application telle que et l'on en déduit alors que f(e) = e (où e et e désignent les neutres respectifs de G et G) et ∀x ∈ G f(x) = [f(x)]. donc ; en composant par l'inverse de , on obtient (autrement dit, un morphisme de groupes conserve l'idempotence, et l'élément neutre d'un groupe est son unique élément idempotent).
HomomorphismIn algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός () meaning "same" and μορφή () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).
Protocole cryptographiqueUn protocole de sécurité (protocole cryptographique ou protocole de chiffrement) est un protocole abstrait ou concret qui remplit une fonction liée à la sécurité et applique des méthodes cryptographiques, souvent sous forme de séquences de primitives cryptographiques. Un protocole décrit comment les algorithmes doivent être utilisés et inclut des détails sur les structures de données et les représentations, à quel point il peut être utilisé pour implémenter plusieurs versions interopérables d'un programme.
Program analysisIn computer science, program analysis is the process of automatically analyzing the behavior of computer programs regarding a property such as correctness, robustness, safety and liveness. Program analysis focuses on two major areas: program optimization and program correctness. The first focuses on improving the program’s performance while reducing the resource usage while the latter focuses on ensuring that the program does what it is supposed to do.
Analyse statique de programmesEn informatique, la notion d’analyse statique de programmes couvre une variété de méthodes utilisées pour obtenir des informations sur le comportement d'un programme lors de son exécution sans réellement l'exécuter. C'est cette dernière restriction qui distingue l'analyse statique des analyses dynamiques (comme le débugage ou le profiling) qui s'attachent, elles, au suivi de l’exécution du programme. L’analyse statique est utilisée pour repérer des erreurs formelles de programmation ou de conception et pour déterminer la facilité ou la difficulté à maintenir le code.
SûretéEn politique, la sûreté est la protection contre le pouvoir ou la violence, le danger ou les menaces. Plus particulièrement, dans la déclaration des Droits de l'homme et du citoyen de 1789, la sûreté est la garantie dont dispose chaque être humain contre l'arbitraire (du pouvoir) : par exemple une arrestation, un emprisonnement ou une condamnation. En droit constitutionnel français, la sûreté est, avec la liberté, la propriété, et la résistance à l'oppression, l'un des quatre « droits naturels et imprescriptibles de l'homme », selon l'article 2 de la déclaration des droits de l'homme et du citoyen de 1789.
Module homomorphismIn algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R, In other words, f is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If M, N are right R-modules, then the second condition is replaced with The of the zero element under f is called the kernel of f.