Concept

Théorème de factorisation

En mathématiques, le théorème de factorisation est un principe général qui permet de construire un morphisme d'une structure quotient dans un autre espace à partir d'un morphisme de vers , de façon à factoriser ce dernier par la surjection canonique de passage au quotient. Soit un ensemble muni d'une relation d'équivalence et la surjection canonique. L'unicité de g est immédiate et guide la preuve de son existence, dont voici plusieurs variantes : Preuve « naïve » : pour tout élément , on pose . Si pour un élément équivalent à , on a par hypothèse. Donc est bien définie. Par construction, f = g∘s. Formalisation de la preuve « naïve », rendant plus manifeste l'utilisation de l'axiome du choix : soit t une section de s (c'est-à-dire une application qui à chaque classe associe un élément de cette classe). On pose g = f∘t. Alors, pour tout élément x de X, (t∘s)(x) R x donc f((t∘s)(x)) = f(x), c'est-à-dire (g∘s)(x) = f(x) ; on a donc bien f = g∘s. Preuve sans axiome du choix : par hypothèse, f envoie tous les éléments d'une classe z sur un même élément y de Y. L'assignation z ↦ y définit alors l'application g qui convient. Formalisation de la preuve sans axiome du choix : en notant F et S les graphes de f et s, la relation binaire G = F ∘ S (définie par : zGy s'il existe un x tel que z = s(x) et f(x) = y) est fonctionnelle et définit l'application g qui convient. Si f est surjective, l'égalité f = g∘s implique que g est aussi surjective. Supposons que est équivalent à . Soient tels que . Alors , donc et . Ce qui veut dire que est injective. La dernière propriété résulte des deux précédentes. (La réciproque est moins utile mais immédiate : pour toute application g : X/R → Y, la composée f = g∘s vérifie x R x ⇒ f(x) = f(x).) Ce théorème peut se spécialiser à un certain nombre de structures algébriques ou topologiques. Sur un groupe , on considère la relation d'équivalence définie par un sous-groupe normal de : si . Alors, la surjection canonique est un morphisme de groupes et le théorème de factorisation s'énonce On considère un espace vectoriel et la relation d'équivalence définie par un sous-espace vectoriel : si .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.