Concept

Théorème de factorisation

Résumé
En mathématiques, le théorème de factorisation est un principe général qui permet de construire un morphisme d'une structure quotient dans un autre espace à partir d'un morphisme de vers , de façon à factoriser ce dernier par la surjection canonique de passage au quotient. Soit un ensemble muni d'une relation d'équivalence et la surjection canonique. L'unicité de g est immédiate et guide la preuve de son existence, dont voici plusieurs variantes : Preuve « naïve » : pour tout élément , on pose . Si pour un élément équivalent à , on a par hypothèse. Donc est bien définie. Par construction, f = g∘s. Formalisation de la preuve « naïve », rendant plus manifeste l'utilisation de l'axiome du choix : soit t une section de s (c'est-à-dire une application qui à chaque classe associe un élément de cette classe). On pose g = f∘t. Alors, pour tout élément x de X, (t∘s)(x) R x donc f((t∘s)(x)) = f(x), c'est-à-dire (g∘s)(x) = f(x) ; on a donc bien f = g∘s. Preuve sans axiome du choix : par hypothèse, f envoie tous les éléments d'une classe z sur un même élément y de Y. L'assignation z ↦ y définit alors l'application g qui convient. Formalisation de la preuve sans axiome du choix : en notant F et S les graphes de f et s, la relation binaire G = F ∘ S (définie par : zGy s'il existe un x tel que z = s(x) et f(x) = y) est fonctionnelle et définit l'application g qui convient. Si f est surjective, l'égalité f = g∘s implique que g est aussi surjective. Supposons que est équivalent à . Soient tels que . Alors , donc et . Ce qui veut dire que est injective. La dernière propriété résulte des deux précédentes. (La réciproque est moins utile mais immédiate : pour toute application g : X/R → Y, la composée f = g∘s vérifie x R x ⇒ f(x) = f(x).) Ce théorème peut se spécialiser à un certain nombre de structures algébriques ou topologiques. Sur un groupe , on considère la relation d'équivalence définie par un sous-groupe normal de : si . Alors, la surjection canonique est un morphisme de groupes et le théorème de factorisation s'énonce On considère un espace vectoriel et la relation d'équivalence définie par un sous-espace vectoriel : si .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.