Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Théorie de la complexité (informatique théorique)vignette|Quelques classes de complexité étudiées dans le domaine de la théorie de la complexité. Par exemple, P est la classe des problèmes décidés en temps polynomial par une machine de Turing déterministe. La théorie de la complexité est le domaine des mathématiques, et plus précisément de l'informatique théorique, qui étudie formellement le temps de calcul, l'espace mémoire (et plus marginalement la taille d'un circuit, le nombre de processeurs, l'énergie consommée ...) requis par un algorithme pour résoudre un problème algorithmique.
Code correcteurvignette|Pour nettoyer les erreurs de transmission introduites par l'atmosphère terrestre (à gauche), les scientifiques de Goddard ont appliqué la correction d'erreur Reed-Solomon (à droite), qui est couramment utilisée dans les CD et DVD. Les erreurs typiques incluent les pixels manquants (blanc) et les faux signaux (noir). La bande blanche indique une brève période pendant laquelle la transmission a été interrompue.
Quantum complexity theoryQuantum complexity theory is the subfield of computational complexity theory that deals with complexity classes defined using quantum computers, a computational model based on quantum mechanics. It studies the hardness of computational problems in relation to these complexity classes, as well as the relationship between quantum complexity classes and classical (i.e., non-quantum) complexity classes. Two important quantum complexity classes are BQP and QMA.
MIMO (télécommunications)Multiple-Input Multiple-Output ou MIMO (« entrées multiples, sorties multiples » en français) est une technique de multiplexage utilisée dans les radars, réseaux sans fil et les réseaux mobiles permettant des transferts de données à plus longue portée et avec un débit plus élevé qu’avec des antennes utilisant la technique SISO (Single-Input Single-Output). Alors que les anciens réseaux Wi-Fi ou les réseaux GSM standards utilisent une seule antenne au niveau de l'émetteur et du récepteur, MIMO utilise plusieurs antennes tant au niveau de l'émetteur (par exemple un routeur) que du récepteur (par exemple un PC portable ou un smartphone).
Système sur une pucethumb|Puce ARM Exynos sur le smartphone Nexus S de Samsung. Un système sur une puce, souvent désigné dans la littérature scientifique par le terme anglais (d'où son abréviation SoC), est un système complet embarqué sur un seul circuit intégré (« puce »), pouvant comprendre de la mémoire, un ou plusieurs microprocesseurs, des périphériques d'interface, ou tout autre composant nécessaire à la réalisation de la fonction attendue.
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Arbre splayUn arbre splay (ou arbre évasé) est un arbre binaire de recherche auto-équilibré possédant en outre la propriété que les éléments auxquels on a récemment accédé (pour les ajouter, les regarder ou les supprimer) sont rapidement accessibles. Ils disposent ainsi d'une complexité amortie en O(log n) pour les opérations courantes comme insertion, recherche ou suppression. Ainsi dans le cas où les opérations possèdent une certaine structure, ces arbres constituent des bases de données ayant de bonnes performances, et ceci reste vrai même si cette structure est a priori inconnue.
Plastic Leaded Chip CarrierUn boîtier de type PLCC (Plastic Leaded Chip Carrier) est un boîtier en plastique carré ou rectangulaire, portant des pattes de composants de type-“J” (à contacts plats) sur ses 4 côtés. Le nombre des pattes peut varier selon les types de 20 à 84. Elles sont espacées entre elles de 1,27 mm (0.05"). Les PLCCs sont conformes au standard JEDEC. L'un des avantages du boîtier PLCC est le gain de place du fait de l'utilisation de ses quatre côtés pour accéder au signaux du composant.