Intégration européennevignette|300px| (Kosovo, non reconnu par certains membres de l'UE) L'expression désigne le transfert volontaire par un État européen d'une partie de ses compétences juridiques et de sa souveraineté nationale aux institutions des Communautés européennes puis de l'Union européenne ou à d'autres grandes institutions supranationales européennes telles que le Conseil de l'Europe. Il est ainsi question d'intégration économique et politique. Alan Milward définit l'intégration européenne comme un .
Différence finieEn mathématiques, et plus précisément en analyse, une différence finie est une expression de la forme f(x + b) − f(x + a) (où f est une fonction numérique) ; la même expression divisée par b − a s'appelle un taux d'accroissement (ou taux de variation), et il est possible, plus généralement, de définir de même des différences divisées. L'approximation des dérivées par des différences finies joue un rôle central dans les méthodes des différences finies utilisées pour la résolution numérique des équations différentielles, tout particulièrement pour les problèmes de conditions aux limites.
Pan-European identityPan-European identity is the sense of personal identification with Europe, in a cultural or political sense. The concept is discussed in the context of European integration, historically in connection with hypothetical proposals, but since the formation of the European Union (EU) in the 1990s increasingly with regard to the project of ever-increasing federalisation of the EU.
États-Unis d'EuropeLes États-Unis d’Europe sont un scénario prospectif de l'évolution de l'Europe politique, principalement représentée par l'Union européenne, fondé sur le fédéralisme européen, dans lequel les pays européens seraient des entités fédérées dans un super-État fédéral européen, sur le modèle, peu ou prou, des États-Unis d'Amérique. Au , l'abbé de Saint-Pierre évoque déjà une unification de l'Europe dans ses Mémoires pour rendre la paix perpétuelle en Europe (1713). Il a l'idée d'un .
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.