Suite spectraleEn algèbre homologique et en topologie algébrique, une suite spectrale est une suite de modules différentiels (En,dn) tels que En+1 = H(En) = Ker dn / dn est l'homologie de En. Elles permettent donc de calculer des groupes d'homologie par approximations successives. Elles ont été introduites par Jean Leray en 1946. Il y a plusieurs manières en pratique pour obtenir une telle suite. Historiquement, depuis 1950, les arguments des suites spectrales ont été un outil performant pour la recherche, notamment dans la théorie de l'homotopie.
Classe de ChernEn mathématiques, les classes de Chern sont des classes caractéristiques associées aux fibrés vectoriels. Elles tiennent leur nom du mathématicien sino-américain Shiing-Shen Chern, qui les a introduites en 1946 dans le cas complexe. Les classes de Chern ont des applications importantes en mathématiques, notamment en topologie et géométrie algébriques, et en physique dans l'étude des théories de Yang-Mills et des champs quantiques. Distinguer deux fibrés vectoriels sur une variété lisse est en général un problème difficile.
Genus of a multiplicative sequenceIn mathematics, a genus of a multiplicative sequence is a ring homomorphism from the ring of smooth compact manifolds up to the equivalence of bounding a smooth manifold with boundary (i.e., up to suitable cobordism) to another ring, usually the rational numbers, having the property that they are constructed from a sequence of polynomials in characteristic classes that arise as coefficients in formal power series with good multiplicative properties.
Théorie de MorseEn mathématiques, et plus précisément en topologie différentielle, la théorie de Morse est un ensemble de techniques et de méthodes mises en place durant la seconde moitié du , permettant d'étudier la topologie d'une variété différentielle en analysant les lignes de niveau d'une fonction définie sur cette variété. Le premier résultat d'importance est le lemme de Morse, qui donne le lien entre points critiques d'une fonction suffisamment générale et modification de la topologie de la variété.