Concept

Théorie de Morse

Résumé
En mathématiques, et plus précisément en topologie différentielle, la théorie de Morse est un ensemble de techniques et de méthodes mises en place durant la seconde moitié du , permettant d'étudier la topologie d'une variété différentielle en analysant les lignes de niveau d'une fonction définie sur cette variété. Le premier résultat d'importance est le lemme de Morse, qui donne le lien entre points critiques d'une fonction suffisamment générale et modification de la topologie de la variété. L'homologie de Morse systématise cette approche. Parmi les résultats les plus remarquables de la théorie de Morse doivent être mentionnés les inégalités de Morse (estimation du nombre de points critiques), et le (étudiant la relation de cobordisme entre variétés). Cette branche des mathématiques porte le nom du mathématicien américain Marston Morse. « Pour ceux qui voient dans la mathématique une construction bien réglée, s'ordonnant logiquement selon une taxonomie bien établie, la théorie de Mo
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement