SodaliteLa sodalite est une espèce minérale du groupe des silicates, sous-groupe des tectosilicates, formée de silicate chloré de sodium et d'aluminium, de formule chimique avec des traces de fer, manganèse, potassium, calcium, eau et soufre. C'est l'un des constituants du lapis-lazuli. Décrite par T. Thomson en 1811. De soda (« sodium ») et du grec lithos (« pierre »), en allusion à sa composition chimique. Ilimaussaq, Narsaq, Province de Kitaa, Groenland.
Température négativeCertains systèmes quantiques liés à la résonance magnétique nucléaire dans les cristaux ou les gaz ultrafroids possèdent des distributions d'énergie particulières pouvant être entièrement peuplées dans l'état de plus basse énergie (zéro absolu) mais également dans l'état de plus haute énergie. L'expression habituelle donnant la température d'un système à volume constant : (avec la température absolue, l'énergie interne, l'entropie, le volume) conduit donc à une fonction non définie au maximum d'entropie et négative au-delà.
Rule of mutual exclusionThe rule of mutual exclusion in molecular spectroscopy relates the observation of molecular vibrations to molecular symmetry. It states that no normal modes can be both Infrared and Raman active in a molecule that possesses a centre of symmetry. This is a powerful application of group theory to vibrational spectroscopy, and allows one to easily detect the presence of this symmetry element by comparison of the IR and Raman spectra generated by the same molecule.
DifférentielleEn analyse fonctionnelle et vectorielle, on appelle différentielle d'ordre 1 d'une fonction en un point (ou dérivée de cette fonction au point ) la partie linéaire de l'accroissement de cette fonction entre et lorsque tend vers 0. Elle généralise aux fonctions de plusieurs variables la notion de nombre dérivé d'une fonction d'une variable réelle, et permet ainsi d'étendre celle de développements limités. Cette différentielle n'existe pas toujours, et une fonction possédant une différentielle en un point est dite différentiable en ce point.
Théorème de dérivation des fonctions composéesEn mathématiques, dans le domaine de l'analyse, le théorème de dérivation des fonctions composées (parfois appelé règle de dérivation en chaîne ou règle de la chaîne, selon l'appellation anglaise) est une formule explicitant la dérivée d'une fonction composée pour deux fonctions dérivables. Elle permet de connaître la j-ème dérivée partielle de la i-ème application partielle de la composée de deux fonctions de plusieurs variables chacune.