Entropy as an arrow of timeEntropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from the future. In thermodynamic systems that are not isolated, local entropy can decrease over time, accompanied by a compensating entropy increase in the surroundings; examples include objects undergoing cooling, living systems, and the formation of typical crystals.
Entropie (thermodynamique)L'entropie est une grandeur physique qui caractérise le degré de désorganisation d'un système. Introduite en 1865 par Rudolf Clausius, elle est nommée à partir du grec , littéralement « action de se retourner » pris au sens de « action de se transformer ». En thermodynamique, l'entropie est une fonction d'état extensive (c'est-à-dire, proportionnelle à la quantité de matière dans le système considéré). Elle est généralement notée , et dans le Système international d'unités elle s'exprime en joules par kelvin ().
Fluctuation theoremThe fluctuation theorem (FT), which originated from statistical mechanics, deals with the relative probability that the entropy of a system which is currently away from thermodynamic equilibrium (i.e., maximum entropy) will increase or decrease over a given amount of time. While the second law of thermodynamics predicts that the entropy of an isolated system should tend to increase until it reaches equilibrium, it became apparent after the discovery of statistical mechanics that the second law is only a statistical one, suggesting that there should always be some nonzero probability that the entropy of an isolated system might spontaneously decrease; the fluctuation theorem precisely quantifies this probability.
Entropy (statistical thermodynamics)The concept entropy was first developed by German physicist Rudolf Clausius in the mid-nineteenth century as a thermodynamic property that predicts that certain spontaneous processes are irreversible or impossible. In statistical mechanics, entropy is formulated as a statistical property using probability theory. The statistical entropy perspective was introduced in 1870 by Austrian physicist Ludwig Boltzmann, who established a new field of physics that provided the descriptive linkage between the macroscopic observation of nature and the microscopic view based on the rigorous treatment of large ensembles of microstates that constitute thermodynamic systems.
Fluctuations thermodynamiquesLes fluctuations thermodynamiques des atomes ou molécules à l'intérieur d'un système sont les faibles écarts statistiques à l'équilibre thermodynamique de ce système. Ils sont décrits par la physique statistique hors d'équilibre. Ces fluctuations affectent tous les degrés de liberté : translation, rotation, vibration et énergie interne des molécules dans un gaz, translation pour un atome adsorbé sur une surface ou constituant un élément étranger dans une structure cristalline.
Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
Loschmidt's paradoxIn physics, Loschmidt's paradox (named for J.J. Loschmidt), also known as the reversibility paradox, irreversibility paradox, or Umkehreinwand (), is the objection that it should not be possible to deduce an irreversible process from time-symmetric dynamics. This puts the time reversal symmetry of (almost) all known low-level fundamental physical processes at odds with any attempt to infer from them the second law of thermodynamics which describes the behaviour of macroscopic systems.
Paradoxe de GibbsLe paradoxe de Gibbs est un pseudo-paradoxe apparaissant lorsqu'on cherche à concilier la thermodynamique et la physique statistique. Il intervient lors du calcul de l'entropie de mélange de deux gaz parfaits. Il a été nommé d'après le physicien Willard Gibbs qui l'a découvert en 1861 dans l'application du théorème qui porte son nom. On retrouve la mention de ce paradoxe au chapitre 16 de son ouvrage paru en 1902. Supposons une boîte divisée par une paroi mobile en deux compartiments de même volume .
État stationnaire (économie)thumb|350px|Les ressources naturelles traversent l'économie et finissent comme des déchets et de la pollution. Une économie stationnaire ou état stationnaire est une économie dont le stock de capital physique et la taille de la population sont constants et qui ne croît pas avec le temps. Normalement, ce terme fait référence à l'économie nationale d'un pays donné, mais il peut également s'appliquer au système économique d'une ville, d'une région ou du monde entier.
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.