Sécurité sémantiqueLa sécurité sémantique est une notion de sécurité importante dans le cadre des preuves de sécurité des protocoles cryptographiques. Cette notion a été introduite en 1984 par Shafi Goldwasser et Silvio Micali. Elle est définie indépendamment du type de cryptographie du système (c’est-à-dire symétrique ou asymétrique), mais est principalement utilisée dans les preuves des schémas à clef publique. La sécurité sémantique traduit formellement le fait qu’il doit être difficile de retrouver de l’information sur le message originel en ayant accès au chiffrement de ce message et aux informations publiques du protocole.
Fonction complètement multiplicativeEn théorie des nombres, les fonctions définies sur l'ensemble des entiers naturels non nuls et qui respectent les produits sont appelées fonctions complètement multiplicatives ou fonctions totalement multiplicatives. Elles font partie des fonctions multiplicatives, qui ne respectent que les produits de nombres premiers entre eux. En dehors de la théorie des nombres, le terme « fonction multiplicative » est souvent considéré comme synonyme de « fonction complètement multiplicative » tel que défini dans cet article.
Finite measureIn measure theory, a branch of mathematics, a finite measure or totally finite measure is a special measure that always takes on finite values. Among finite measures are probability measures. The finite measures are often easier to handle than more general measures and show a variety of different properties depending on the sets they are defined on. A measure on measurable space is called a finite measure if it satisfies By the monotonicity of measures, this implies If is a finite measure, the measure space is called a finite measure space or a totally finite measure space.
Principe de Markovvignette|250x250px|Une représentation artistique d'une machine de Turing. Le principe de Markov dit que s'il est impossible qu'une machine de Turing ne s'arrête pas, alors elle doit s'arrêter. Le principe de Markov, nommé d'après Andreï Markov Jr, est une déclaration d'existence conditionnelle pour laquelle il existe de nombreuses formulations, ainsi qu'il est discuté ci-dessous. Ce principe est utilisé dans la validité logique classique, mais pas dans les mathématiques intuitionniste constructives.
Problème de BâleEn mathématiques, le problème de Bâle (connu parfois aussi sous le nom de problème de Mengoli) est un problème renommé de théorie des nombres, qui consiste à demander la valeur de la somme de la série convergente : Le problème a été résolu par Leonhard Euler, qui établit que cette somme vaut : et en donna une première preuve en 1735, puis une deuxième, plus rigoureuse, en 1741. Posé en premier par Pietro Mengoli en 1644, étudié 40 ans plus tard par Jacques Bernoulli né à Bâle, le problème résiste aux attaques des mathématiciens éminents de l'époque.
Entier friableEn théorie des nombres, un nombre friable, ou lisse, est un entier naturel dont l'ensemble des facteurs premiers sont petits, relativement à une borne donnée. Les entiers friables sont particulièrement importants dans la cryptographie basée sur la factorisation, qui constitue depuis une vingtaine d'années une branche dynamique de la théorie des nombres, avec des applications dans des domaines aussi variés que l'algorithmique (problème du logarithme discret), la théorie de la sommabilité (sommation friable des séries de Fourier), la théorie élémentaire des nombres premiers (preuve élémentaire du théorème des nombres premiers de Daboussi en 1984), la méthode du cercle (problème de Waring), le modèle de Billingsley, le modèle de , l', les théorèmes de type Erdős-Wintner, etc.
Théorèmes d'incomplétude de GödelLes théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »). Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert.
Arithmétique du second ordreEn logique mathématique, l'arithmétique du second ordre est une théorie des entiers naturels et des ensembles d'entiers naturels. Elle a été introduite par David Hilbert et Paul Bernays dans leur livre Grundlagen der Mathematik. L'axiomatisation usuelle de l'arithmétique du second ordre est notée Z2. L'arithmétique de second ordre a pour conséquence les théorèmes de l'arithmétique de Peano (du premier ordre), mais elle est à la fois plus forte et plus expressive que celle-ci.
Heyting arithmeticIn mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it. Heyting arithmetic can be characterized just like the first-order theory of Peano arithmetic , except that it uses the intuitionistic predicate calculus for inference. In particular, this means that the double-negation elimination principle, as well as the principle of the excluded middle , do not hold.
Correction (logique)En logique, la forme d'une argumentation déductive est correcte si et seulement si elle est valide et que toutes ses prémisses sont effectivement vraies. En logique formelle, un système logique est correct si on peut lui associer une sémantique (on dit aussi un modèle) qui le justifie. La correction indique donc que les règles d’un tel système mettent en œuvre des raisonnements qui font du sens, puisqu'on peut les interpréter. Le terme de correction peut ici être pris dans son sens de qualité de ce qui est correct.