Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
Effet Overhauser nucléaireEn spectroscopie RMN, l'effet Overhauser nucléaire décrit une interaction entre deux spins à travers l'espace et non pas à travers les liaisons chimiques comme le couplage scalaire. Cette interaction est limitée à environ 5-6 Å. En anglais, cet effet s'appelle "Nuclear Overhauser Effect", soit NOE. Cet acronyme est souvent utilisé en français sous l'expression "effet NOE". Une des conséquences de la résonance magnétique nucléaire est l'interaction dipôle-dipôle à travers l'espace.
Spin–lattice relaxationDuring nuclear magnetic resonance observations, spin–lattice relaxation is the mechanism by which the longitudinal component of the total nuclear magnetic moment vector (parallel to the constant magnetic field) exponentially relaxes from a higher energy, non-equilibrium state to thermodynamic equilibrium with its surroundings (the "lattice"). It is characterized by the spin–lattice relaxation time, a time constant known as T1.
Tableau périodique des élémentsvignette|400px|Tableau périodique des éléments au . 400px|vignette|Avec davantage de détails par élément. Le tableau périodique des éléments, également appelé tableau ou table de Mendeleïev, classification périodique des éléments ou simplement tableau périodique, représente tous les éléments chimiques, ordonnés par numéro atomique croissant et organisés en fonction de leur configuration électronique, laquelle sous-tend leurs propriétés chimiques.
Spectroscopie RamanLa spectroscopie Raman (ou spectrométrie Raman) et la microspectroscopie Raman sont des méthodes non destructives d'observation et de caractérisation de la composition moléculaire et de la structure externe d'un matériau, qui exploite le phénomène physique selon lequel un milieu modifie légèrement la fréquence de la lumière y circulant. Ce décalage en fréquence dit l'effet Raman correspond à un échange d'énergie entre le rayon lumineux et le milieu, et donne des informations sur le substrat lui-même.
Applied spectroscopyApplied spectroscopy is the application of various spectroscopic methods for the detection and identification of different elements or compounds to solve problems in fields like forensics, medicine, the oil industry, atmospheric chemistry, and pharmacology. A common spectroscopic method for analysis is Fourier transform infrared spectroscopy (FTIR), where chemical bonds can be detected through their characteristic infrared absorption frequencies or wavelengths.
Spectroscopie RMNvignette|redresse|Spectromètre RMN avec passeur automatique d'échantillons utilisé en chimie organique pour la détermination des structures chimiques. vignette|redresse|Animation présentant le principe de la Résonance Magnétique Nucléaire (RMN). La spectroscopie RMN est une technique qui exploite les propriétés magnétiques de certains noyaux atomiques. Elle est basée sur le phénomène de résonance magnétique nucléaire (RMN), utilisé également en sous le nom d’.
Bloc du tableau périodiqueUn bloc du tableau périodique est un ensemble de groupes d'éléments chimiques dont les électrons de valence occupent, à l'état fondamental, des orbitales qui partagent le même nombre quantique azimutal l, c'est-à-dire appartenant aux mêmes sous-couches électroniques. Ces sous-couches étant désignées par les lettres s, p, d, f voire g, les blocs correspondants sont désignés par ces mêmes lettres.
Spectroscopie des rayons XLa spectroscopie des rayons X rassemble plusieurs techniques de caractérisation spectroscopique de matériaux par excitation par rayons X. Trois familles de techniques sont le plus souvent utilisées. Selon les phénomènes mis en jeu, on distingue trois classes : L'analyse se fait par l'une des deux méthodes suivantes : analyse dispersive en énergie (Energy-dispersive x-ray analysis (EDXA) en anglais) ; analyse dispersive en longueur d'onde (Wavelength dispersive x-ray analysis (WDXA) en anglais).
Groupe du tableau périodiquevignette|Tableau périodique de 18 colonnes, avec Lu et Lr dans le groupe 3 Un groupe du tableau périodique comprend les éléments chimiques d'une même colonne du tableau périodique. Le tableau standard est constitué de , tandis que les colonnes contenant les éléments du bloc f ne sont pas numérotées. Les électrons de valence des éléments d'un même groupe partagent la même configuration électronique, ce qui leur confère des propriétés chimiques et physiques semblables. Il existe trois systèmes de numérotation des groupes.