SuréchantillonnageLe suréchantillonnage ou sur-échantillonnage est une technique particulière d'échantillonnage. Elle consiste à échantillonner le signal à une fréquence très élevée, beaucoup plus que ne l'exigerait le théorème de Shannon. Le suréchantillonnage permet de : Faciliter la conception du filtre anticrènelage, (ou antirepliement, ou encore anti-aliasing) ; Diminuer le bruit présent dans la bande utile et d'augmenter le rapport signal sur bruit. Il est employé dans les convertisseurs sigma-delta.
Traitement du signalLe traitement du signal est la discipline qui développe et étudie les techniques de traitement, d'analyse et d' des . Parmi les types d'opérations possibles sur ces signaux, on peut dénoter le contrôle, le filtrage, la compression et la transmission de données, la réduction du bruit, la déconvolution, la prédiction, l'identification, la classification Bien que cette discipline trouve son origine dans les sciences de l'ingénieur (particulièrement l'électronique et l'automatique), elle fait aujourd'hui largement appel à de nombreux domaines des mathématiques, comme la , les processus stochastiques, les espaces vectoriels et l'algèbre linéaire et des mathématiques appliquées, notamment la théorie de l'information, l'optimisation ou encore l'analyse numérique.
Periodic summationIn mathematics, any integrable function can be made into a periodic function with period P by summing the translations of the function by integer multiples of P. This is called periodic summation: When is alternatively represented as a Fourier series, the Fourier coefficients are equal to the values of the continuous Fourier transform, at intervals of . That identity is a form of the Poisson summation formula. Similarly, a Fourier series whose coefficients are samples of at constant intervals (T) is equivalent to a periodic summation of which is known as a discrete-time Fourier transform.
Acquisition compriméeL'acquisition comprimée (en anglais compressed sensing) est une technique permettant de trouver la solution la plus parcimonieuse d'un système linéaire sous-déterminé. Elle englobe non seulement les moyens pour trouver cette solution mais aussi les systèmes linéaires qui sont admissibles. En anglais, elle porte le nom de Compressive sensing, Compressed Sampling ou Sparse Sampling.
Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Time–frequency analysisIn signal processing, time–frequency analysis comprises those techniques that study a signal in both the time and frequency domains simultaneously, using various time–frequency representations. Rather than viewing a 1-dimensional signal (a function, real or complex-valued, whose domain is the real line) and some transform (another function whose domain is the real line, obtained from the original via some transform), time–frequency analysis studies a two-dimensional signal – a function whose domain is the two-dimensional real plane, obtained from the signal via a time–frequency transform.
Débit binaireLe débit binaire est une mesure de la quantité de données numériques transmises par unité de temps. Selon ses définitions normatives, il s'exprime en bits par seconde (bit/s, b/s ou bps) ou un de ses multiples en employant les préfixes du Système international (SI) : kb/s (kilobits par seconde), Mb/s (mégabits par seconde) et ainsi de suite. Dans le domaine de l'informatique, le débit est parfois exprimé en octets par seconde. Un octet équivaut à 8 bits, nombre de bits correspondant aux premières et aux plus simples des machines, et permettant de transmettre un caractère alphanumérique.
Audio bit depthIn digital audio using pulse-code modulation (PCM), bit depth is the number of bits of information in each sample, and it directly corresponds to the resolution of each sample. Examples of bit depth include Compact Disc Digital Audio, which uses 16 bits per sample, and DVD-Audio and Blu-ray Disc which can support up to 24 bits per sample. In basic implementations, variations in bit depth primarily affect the noise level from quantization error—thus the signal-to-noise ratio (SNR) and dynamic range.
Radio intelligenteEn télécommunication, une radio intelligente ou radio cognitive est un équipement émetteur ou récepteur capable d'adapter certains de ses paramètres automatiquement en fonction de son environnement. Le concept de radio intelligente a été introduit en 1999 par Joseph Mitola. Joseph Mitola travaillait sur la radio logicielle. Il proposa d'utiliser les possibilités de reconfiguration apportées par le logiciel pour transformer les équipements radio statiques en équipements radio dynamiques capables d'adapter leurs paramètres comme la modulation, la puissance d'émission ou les bandes de fréquence utilisées.
Sparse approximationSparse approximation (also known as sparse representation) theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in , signal processing, machine learning, medical imaging, and more. Consider a linear system of equations , where is an underdetermined matrix and . The matrix (typically assumed to be full-rank) is referred to as the dictionary, and is a signal of interest.