Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Deterministic systemIn mathematics, computer science and physics, a deterministic system is a system in which no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given starting condition or initial state. Physical laws that are described by differential equations represent deterministic systems, even though the state of the system at a given point in time may be difficult to describe explicitly.
Algorithmic mechanism designAlgorithmic mechanism design (AMD) lies at the intersection of economic game theory, optimization, and computer science. The prototypical problem in mechanism design is to design a system for multiple self-interested participants, such that the participants' self-interested actions at equilibrium lead to good system performance. Typical objectives studied include revenue maximization and social welfare maximization. Algorithmic mechanism design differs from classical economic mechanism design in several respects.
Équation différentielle homogèneL'expression équation différentielle homogène a deux significations totalement distinctes et indépendantes. Une équation différentielle du premier ordre mais non nécessairement linéaire est dite homogène de degré n si elle peut s'écrire sous la forme où F est une fonction homogène de degré n, c'est-à-dire vérifiant Autrement dit (en posant h(u)=F(1,u)), c'est une équation qui s'écrit Le cas le plus étudié est celui où le degré d'homogénéité est 0, à tel point que dans ce cas on ne mentionne même pas le degré.
Représentation d'étatEn automatique, une représentation d'état permet de modéliser un système dynamique en utilisant des variables d'état. Cette représentation, qui peut être linéaire ou non, continue ou discrète, permet de déterminer l'état du système à n'importe quel instant futur si l'on connaît l'état à l'instant initial et le comportement des variables exogènes qui influent sur le système. La représentation d'état du système permet de connaître son comportement "interne" et pas seulement son comportement "externe" comme c'est le cas avec sa fonction de transfert.
Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
State space (physics)In physics, a state space is an abstract space in which different "positions" represent, not literal locations, but rather states of some physical system. This makes it a type of phase space. Specifically, in quantum mechanics a state space is a complex Hilbert space in which each unit vector represents a different state that could come out of a measurement. Each unit vector specifies a different dimension, so the numbers of dimensions in this Hilbert space depends on the system we choose to describe.
Équation différentielle de BernoulliUne équation différentielle de Bernoulli est une équation différentielle du premier ordre de la forme . On considère donc l'équation : où m est un réel différent de 0 et 1 et où a et b sont des applications définies sur un intervalle ouvert I de et à valeurs réelles. En général, est un entier naturel, mais on peut prendre m réel à condition de chercher y à valeurs strictement positives. En général, a et b sont des fonctions continues.
Espace de BanachEn mathématiques, plus particulièrement en analyse fonctionnelle, on appelle espace de Banach un espace vectoriel normé sur un sous-corps K de C (en général, K = R ou C), complet pour la distance issue de sa norme. Comme la topologie induite par sa distance est compatible avec sa structure d’espace vectoriel, c’est un espace vectoriel topologique. Les espaces de Banach possèdent de nombreuses propriétés qui font d'eux un outil essentiel pour l'analyse fonctionnelle. Ils doivent leur nom au mathématicien polonais Stefan Banach.