A differential equation can be homogeneous in either of two respects.
A first order differential equation is said to be homogeneous if it may be written
where f and g are homogeneous functions of the same degree of x and y. In this case, the change of variable y = ux leads to an equation of the form
which is easy to solve by integration of the two members.
Otherwise, a differential equation is homogeneous if it is a homogeneous function of the unknown function and its derivatives. In the case of linear differential equations, this means that there are no constant terms. The solutions of any linear ordinary differential equation of any order may be deduced by integration from the solution of the homogeneous equation obtained by removing the constant term.
The term homogeneous was first applied to differential equations by Johann Bernoulli in section 9 of his 1726 article De integraionibus aequationum differentialium (On the integration of differential equations).
A first-order ordinary differential equation in the form:
is a homogeneous type if both functions M(x, y) and N(x, y) are homogeneous functions of the same degree n. That is, multiplying each variable by a parameter λ, we find
Thus,
In the quotient , we can let t = 1/x to simplify this quotient to a function f of the single variable y/x:
That is
Introduce the change of variables y = ux; differentiate using the product rule:
This transforms the original differential equation into the separable form
or
which can now be integrated directly: ln x equals the antiderivative of the right-hand side (see ordinary differential equation).
A first order differential equation of the form (a, b, c, e, f, g are all constants)
where af ≠ be
can be transformed into a homogeneous type by a linear transformation of both variables (α and β are constants):
Linear differential equation
A linear differential equation is homogeneous if it is a homogeneous linear equation in the unknown function and its derivatives. It follows that, if φ(x) is a solution, so is cφ(x), for any (non-zero) constant c.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This article proposes a dynamical system modeling approach for the analysis of longitudinal data of self-regulated homeostatic systems experiencing multiple excitations. It focuses on the evolution of
En mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Une équation différentielle linéaire est un cas particulier d'équation différentielle pour lequel on peut appliquer des procédés de superposition de solutions, et exploiter des résultats d'algèbre linéaire. De nombreuses équations différentielles de la physique vérifient la propriété de linéarité. De plus, les équations différentielles linéaires apparaissent naturellement en perturbant une équation différentielle (non linéaire) autour d'une de ses solutions.
L'expression équation différentielle homogène a deux significations totalement distinctes et indépendantes. Une équation différentielle du premier ordre mais non nécessairement linéaire est dite homogène de degré n si elle peut s'écrire sous la forme où F est une fonction homogène de degré n, c'est-à-dire vérifiant Autrement dit (en posant h(u)=F(1,u)), c'est une équation qui s'écrit Le cas le plus étudié est celui où le degré d'homogénéité est 0, à tel point que dans ce cas on ne mentionne même pas le degré.
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Le cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, approximation de fonctions, intégration et dérivation