Stack (mathematics)In mathematics a stack or 2-sheaf is, roughly speaking, a sheaf that takes values in categories rather than sets. Stacks are used to formalise some of the main constructions of descent theory, and to construct fine moduli stacks when fine moduli spaces do not exist. Descent theory is concerned with generalisations of situations where isomorphic, compatible geometrical objects (such as vector bundles on topological spaces) can be "glued together" within a restriction of the topological basis.
Champ algébriqueIn mathematics, an algebraic stack is a vast generalization of algebraic spaces, or schemes, which are foundational for studying moduli theory. Many moduli spaces are constructed using techniques specific to algebraic stacks, such as Artin's representability theorem, which is used to construct the moduli space of pointed algebraic curves and the moduli stack of elliptic curves. Originally, they were introduced by Grothendieck to keep track of automorphisms on moduli spaces, a technique which allows for treating these moduli spaces as if their underlying schemes or algebraic spaces are smooth.
Moduli stack of elliptic curvesIn mathematics, the moduli stack of elliptic curves, denoted as or , is an algebraic stack over classifying elliptic curves. Note that it is a special case of the moduli stack of algebraic curves . In particular its points with values in some field correspond to elliptic curves over the field, and more generally morphisms from a scheme to it correspond to elliptic curves over . The construction of this space spans over a century because of the various generalizations of elliptic curves as the field has developed.
Digital imagingDigital imaging or digital image acquisition is the creation of a digital representation of the visual characteristics of an object, such as a physical scene or the interior structure of an object. The term is often assumed to imply or include the , , , printing and display of such images. A key advantage of a , versus an analog image such as a film photograph, is the ability to digitally propagate copies of the original subject indefinitely without any loss of image quality.
Arbre de décision (apprentissage)L’apprentissage par arbre de décision désigne une méthode basée sur l'utilisation d'un arbre de décision comme modèle prédictif. On l'utilise notamment en fouille de données et en apprentissage automatique. Dans ces structures d'arbre, les feuilles représentent les valeurs de la variable-cible et les embranchements correspondent à des combinaisons de variables d'entrée qui mènent à ces valeurs. En analyse de décision, un arbre de décision peut être utilisé pour représenter de manière explicite les décisions réalisées et les processus qui les amènent.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Espace de modulesEn mathématiques, un espace de modules est un espace paramétrant les diverses classes d'objets sous une relation d'équivalence ; l'intérêt est de pouvoir alors munir naturellement ces espaces de classes d'une structure supplémentaire. L'archétype de cette situation est la classification des courbes elliptiques par les points d'une courbe modulaire. Autre exemple : en géométrie différentielle, l'espace de modules d'une variété est l'espace des paramètres définissant la géométrie modulo les difféomorphismes locaux et globaux.
Épuisement des adresses IPv4thumb|Épuisement des adresses IPv4 depuis 1995. La courbe RIR indique les blocs assignés par les registres Internet régionaux aux registres locaux. La différence entre les deux courbes représente la quantité d'adresses libres dont les RIR disposent. thumb|Taux d'assignation des adresses IP par registre Internet régional en moyenne par trimestre. La croissance du nombre d'utilisateurs et de serveurs d'Internet s'accompagne d'un épuisement des adresses IPv4, c'est-à-dire de la diminution progressive de la quantité d'adresses IPv4 publiques disponibles.
Courbe ROCLa fonction d’efficacité du récepteur, plus fréquemment désignée sous le terme « courbe ROC » (de l’anglais receiver operating characteristic, pour « caractéristique de fonctionnement du récepteur ») dite aussi caractéristique de performance (d'un test) ou courbe sensibilité/spécificité, est une mesure de la performance d'un classificateur binaire, c'est-à-dire d'un système qui a pour objectif de catégoriser des éléments en deux groupes distincts sur la base d'une ou plusieurs des caractéristiques de chacun