Théorie de l'orbitale moléculaireLa théorie de l'orbitale moléculaire (TOM) est un des socles de la chimie théorique du . Jusqu'alors les chimistes théoriciens étaient prisonniers des succès du modèle de la liaison covalente de Lewis. Les méthodes spectroscopiques du montrent les limites de l'idée de liaisons localisées en résolvant des structures chimiques jusque-là inédites. Par exemple la mésomérie ou résonance était vue, à tort, comme le passage rapide d'une conformation à une autre (résonance de Kekulé), ce qui n'était pas vérifié ni dans le spectre infrarouge ni dans la réactivité de molécules comme le benzène.
Microscope à effet tunnelthumb|Atomes de silicium à la surface d'un cristal de carbure de silicium (SiC). Image obtenue à l'aide d'un STM. Le microscope à effet tunnel (en anglais, scanning tunneling microscope, STM) est inventé en 1981 par des chercheurs d'IBM, Gerd Binnig et Heinrich Rohrer, qui reçurent le prix Nobel de physique pour cette invention en 1986. C'est un microscope en champ proche qui utilise un phénomène quantique, l'effet tunnel, pour déterminer la morphologie et la densité d'états électroniques de surfaces conductrices ou semi-conductrices avec une résolution spatiale pouvant être égale ou inférieure à la taille des atomes.
Orbitale moléculairevignette|Orbitales moléculaires du 1,3-butadiène, montrant les deux orbitales occupées à l'état fondamental : π est liante entre tous les atomes, tandis que π n'est liante qu'entre les atomes C et C ainsi qu'entre les atomes C et C, et est antiliante entre C et C. En chimie quantique, une orbitale moléculaire est une fonction mathématique décrivant le comportement ondulatoire d'un électron dans une molécule.
Orbitale antilianteUne orbitale antiliante désigne un type de liaison chimique qui s'oppose à la stabilité de la molécule. Cela survient lorsque les phases d'électron et des orbitales atomiques à l'origine d'une orbitale moléculaire sont de signe opposé, c'est-à-dire que ces orbitales atomiques sont en opposition de phase : si des électrons occupent de telles orbitales antiliantes, ils se repoussent et tendent à dissocier la molécule. L'effet d'une orbitale antiliante est plus sensible que celui d'une orbitale liante, la différence s'expliquant par la répulsion entre les noyaux atomiques.
Combinaison linéaire d'orbitales atomiquesEn chimie quantique, une combinaison linéaire d'orbitales atomiques (CLOA) représente la superposition d'orbitales atomiques et permet de calculer les orbitales moléculaires. En effet, dans une molécule le nuage d'électrons est modifié et dépend des atomes participant aux liaisons chimiques : la CLOA permet d'approximer cette nouvelle fonction d'onde en se basant sur celles de chaque élément pris individuellement.
Bonding molecular orbitalIn theoretical chemistry, the bonding orbital is used in molecular orbital (MO) theory to describe the attractive interactions between the atomic orbitals of two or more atoms in a molecule. In MO theory, electrons are portrayed to move in waves. When more than one of these waves come close together, the in-phase combination of these waves produces an interaction that leads to a species that is greatly stabilized. The result of the waves’ constructive interference causes the density of the electrons to be found within the binding region, creating a stable bond between the two species.
HexagoneUn hexagone, du grec et , est un polygone à six sommets et six côtés. Un hexagone peut être régulier ou irrégulier. Un hexagone régulier est un hexagone convexe dont les six côtés ont tous la même longueur. Les angles internes d'un hexagone régulier sont tous de 120°. Comme les carrés et les triangles équilatéraux, les hexagones réguliers permettent un pavage régulier du plan. Les pavages carrés et hexagonaux sont notamment utilisés pour réaliser des dallages.
OctaèdreEn géométrie, un octaèdre (du grec oktô, huit et hedra, face) est un polyèdre à huit faces. Certains octaèdres satisfont des conditions de symétrie ou de régularité des faces : l'octaèdre régulier, le prisme hexagonal, la pyramide à base heptagonale, le tétraèdre tronqué, le trapézoèdre tétragonal. Un octaèdre dont toutes les faces sont triangulaires possède douze arêtes et six sommets. Fichier:Octahedron.svg | Octaèdre régulier Fichier:Hexagonal_prism.png | Prisme hexagonal Fichier:Truncated_tetrahedron.
Orbitale de type gaussienEn chimie numérique, les orbitales de type gaussien (connues aussi comme orbitales gaussiennes ou gaussiennes, en anglais Gaussian orbitals - GTO) sont des fonctions utilisées comme orbitales atomiques dans les méthodes LCAO pour le calcul des orbitales électroniques dans les molécules ou les solides. La raison principale d'utilisation d'une base de fonctions gaussiennes pour des calculs de chimie numérique est le théorème de produit gaussien, qui assure que le produit de deux fonctions gaussiennes centrées sur deux atomes différents est une somme finie de gaussiennes centrées sur un point sur l'axe qui les connecte.
Prisme hexagonalthumb|Un prisme hexagonal. En géométrie, le prisme hexagonal est le quatrième dans l'ensemble infini des prismes formés par des côtés carrés et deux faces hexagonales régulières. Il possède 8 faces, 12 sommets et 18 arêtes. C'est un octaèdre. Néanmoins, le terme octaèdre est principalement utilisé avec le terme « régulier » ou implicitement, par conséquent il ne signifie pas un prisme hexagonal ; dans le sens général, le terme octaèdre, n'est guère utilisé parce qu'il existe différents types qui n'ont pas grand-chose en commun excepté le nombre de faces.