Grammaire non contextuelleEn linguistique et en informatique théorique, une grammaire algébrique, ou grammaire non contextuelle, aussi appelée grammaire hors-contexte ou grammaire « context-free » est une grammaire formelle dans laquelle chaque règle de production est de la forme où est un symbole non terminal et est une chaîne composée de terminaux et/ou de non-terminaux. Le terme « non contextuel » provient du fait qu'un non terminal peut être remplacé par , sans tenir compte du contexte où il apparaît.
ConiqueEn géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Groupe des quaternionsEn mathématiques et plus précisément en théorie des groupes, le groupe des quaternions est l'un des deux groupes non abéliens d'ordre 8. Il admet une représentation réelle irréductible de degré 4, et la sous-algèbre des matrices 4×4 engendrée par son image est un corps gauche qui s'identifie au corps des quaternions de Hamilton. Le groupe des quaternions est souvent désigné par le symbole Q ou Q8 et est écrit sous forme multiplicative, avec les 8 éléments suivants : Ici, 1 est l'élément neutre, et pour tout a dans Q.
Objet projectifEn théorie des catégories, un objet projectif est une forme de généralisation des modules projectifs. Les objets projectifs dans les catégories abéliennes sont utilisés en algèbre homologique. La notion duale d'objet projectif est celle d'. Un objet dans une catégorie est dit projectif si pour tout épimorphisme et tout morphisme , il existe un morphisme tel que , c'est-à-dire que le diagramme suivant commute : 150px|center Autrement dit, tout morphisme se factorise par les épimorphismes .