Beta function (physics)In theoretical physics, specifically quantum field theory, a beta function, β(g), encodes the dependence of a coupling parameter, g, on the energy scale, μ, of a given physical process described by quantum field theory. It is defined as and, because of the underlying renormalization group, it has no explicit dependence on μ, so it only depends on μ implicitly through g. This dependence on the energy scale thus specified is known as the running of the coupling parameter, a fundamental feature of scale-dependence in quantum field theory, and its explicit computation is achievable through a variety of mathematical techniques.
2-forme de courbureLa 2-forme de courbure est une forme différentielle induite par une forme de connexion sur un fibré principal dans le domaine de la géométrie différentielle. Soient : un groupe de Lie ; l'algèbre de Lie de ; une variété différentielle ; un -fibré principal sur ; la représentation adjointe de sur son algèbre de Lie ; le fibré adjoint de sur ; le produit extérieur sur les -formes différentielles réelles sur ; le crochet de Lie sur l'algèbre de Lie ; le produit wedge-crochet sur les -formes différentielles à valeurs en sur , défini par les combinaisons linéaires de : une 1-forme de connexion sur .
Quantification géométriqueEn physique mathématique, la quantification géométrique est une approche formelle du passage de la mécanique classique à la mécanique quantique fondée sur la géométrie symplectique. Par exemple, des liens peuvent être tissés entre : l'équation de Hamilton et l'équation de Heisenberg; le crochet de Poisson et le commutateur quantique. Physiquement parlant, la quantification géométrique consiste à mettre un chapeau sur les observables classiques d'une variété symplectique donnée.
Histoire de la mécanique quantiquethumb|Le congrès Solvay de 1927, année charnière dans le passage des théories dites semi-classiques aux théories quantiques proprement dites. L'histoire de la mécanique quantique commence traditionnellement avec le problème de la catastrophe ultraviolette et sa résolution en 1900 par l'hypothèse de Max Planck stipulant que tout système atomique irradiant de l'énergie peut être divisé en « éléments d'énergie » discrets liés à la constante h qui, depuis, porte son nom (constante de Planck).
Landau poleIn physics, the Landau pole (or the Moscow zero, or the Landau ghost) is the momentum (or energy) scale at which the coupling constant (interaction strength) of a quantum field theory becomes infinite. Such a possibility was pointed out by the physicist Lev Landau and his colleagues. The fact that couplings depend on the momentum (or length) scale is the central idea behind the renormalization group. Landau poles appear in theories that are not asymptotically free, such as quantum electrodynamics (QED) or φ4 theory—a scalar field with a quartic interaction—such as may describe the Higgs boson.
Quantum field theory in curved spacetimeIn theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy propagating through that spacetime. A general prediction of this theory is that particles can be created by time-dependent gravitational fields (multigraviton pair production), or by time-independent gravitational fields that contain horizons.