Graphe arête-connexeEn théorie des graphes, un graphe k-arête-connexe est un graphe connexe qu'il est possible de déconnecter en supprimant k arêtes et tel que ce k soit minimal. Il existe donc un ou plusieurs ensembles de k arêtes dont la suppression rende le graphe déconnecté, mais la suppression de k-1 arêtes, quelles qu'elles soient, le fait demeurer connexe. Un graphe régulier de degré k est au plus k-arête-connexe et k-sommet-connexe. S'il est effectivement k-arête-connexe et k-sommet-connexe, il est qualifié de graphe optimalement connecté.
Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
ConnectomiqueLa connectomique est l'établissement et l'étude du connectome, c'est-à-dire de l'ensemble des connexions neuronales du cerveau. La connectomique est la production et l'étude des connectomes : des cartes complètes des connexions au sein du système nerveux d'un organisme. Plus généralement, on peut considérer qu'il s'agit de l'étude des schémas de câblage neuronaux, en mettant l'accent sur la façon dont la connectivité structurelle, les synapses individuelles, la morphologie et l'ultrastructure cellulaires contribuent à la constitution d'un réseau.
Interface neuronale directethumb|250px|Schéma d'une interface neuronale directe. Une interface neuronale directe - abrégée IND ou BCI ou encore ICM (interface cerveau-machine, ou encore interface cerveau-ordinateur) est une interface de communication directe entre un cerveau et un dispositif externe (un ordinateur, un système électronique...). Ces systèmes peuvent être conçus dans le but d'étudier le cerveau, d'assister, améliorer ou réparer des fonctions humaines de cognition ou d'action défaillantes. L'IND peut être unidirectionnelle ou bidirectionnelle.
Brain connectivity estimatorsBrain connectivity estimators represent patterns of links in the brain. Connectivity can be considered at different levels of the brain's organisation: from neurons, to neural assemblies and brain structures. Brain connectivity involves different concepts such as: neuroanatomical or structural connectivity (pattern of anatomical links), functional connectivity (usually understood as statistical dependencies) and effective connectivity (referring to causal interactions).
Component (graph theory)In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting of the whole graph. Components are sometimes called connected components. The number of components in a given graph is an important graph invariant, and is closely related to invariants of matroids, topological spaces, and matrices.
Neural decodingNeural decoding is a neuroscience field concerned with the hypothetical reconstruction of sensory and other stimuli from information that has already been encoded and represented in the brain by networks of neurons. Reconstruction refers to the ability of the researcher to predict what sensory stimuli the subject is receiving based purely on neuron action potentials. Therefore, the main goal of neural decoding is to characterize how the electrical activity of neurons elicit activity and responses in the brain.
Graphe symétriqueEn théorie des graphes, un graphe non orienté G=(V,E) est symétrique (ou arc-transitif) si, étant donné deux paires quelconques de sommets reliés par une arête u1—v1 et u2—v2 de G, il existe un automorphisme de graphe : tel que et . En d'autres termes, un graphe est symétrique si son groupe d'automorphismes agit transitivement sur ses paires ordonnées de sommets reliés. Un tel graphe est parfois appelé 1-arc-transitif. Par définition, un graphe symétrique sans sommet isolé est sommet-transitif et arête-transitif.
Invariant de grapheEn théorie des graphes, un invariant de graphe est une quantité qui n'est pas modifiée par isomorphisme de graphes. Un invariant de graphe ne dépend donc que de la structure abstraite et pas des particularités de la représentation comme l'étiquetage ou le tracé. De nombreux invariants sont conservés par certains préordres ou ordres partiels naturels sur les graphes : Une propriété est monotone si elle est héritée par les sous-graphes. Le caractère biparti, sans triangle, ou planaire sont des exemples de propriétés monotones.
Lobe (cerveau)thumb|right|Les lobes externes du cerveau humain. Sont aussi dessinés le cervelet en bleu et le tronc cérébral en noir qui sont des structures nerveuses distinctes du cerveau proprement dit. thumb|right|150px| Vue en 3D des lobes thumb|right| Vue en 3D des lobes externes du cerveau : frontal (rouge), pariétal (orange), temporal (vert), et occipital (jaune).Sont également représentés le cervelet (bleu) et le tronc cérébral (noir). En anatomie, chacun des deux hémisphères du cerveau est divisée en plusieurs lobes dont quatre sont dits externes et deux sont dits internes.