Histoire de la mécanique quantiquethumb|Le congrès Solvay de 1927, année charnière dans le passage des théories dites semi-classiques aux théories quantiques proprement dites. L'histoire de la mécanique quantique commence traditionnellement avec le problème de la catastrophe ultraviolette et sa résolution en 1900 par l'hypothèse de Max Planck stipulant que tout système atomique irradiant de l'énergie peut être divisé en « éléments d'énergie » discrets liés à la constante h qui, depuis, porte son nom (constante de Planck).
Fonction de plusieurs variables complexesLa théorie des fonctions de plusieurs variables complexes est une branche des mathématiques traitant des fonctions à variables complexes. On définit de cette manière une fonction de Cn dans C, dont on peut noter les variables . L'analyse complexe correspond au cas . H. Cartan: Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes. Hermann, Paris, 1961. C. Laurent-Thiébaut : Théorie des fonctions holomorphes de plusieurs variables. EDP Sciences, 1997. V.S.
Potentiel quantiqueLe potentiel quantique est un principe central de la théorie de de Broglie-Bohm, une interprétation ontologique, non standard, de la physique quantique introduite par David Bohm en . Initialement présenté sous le nom de « potentiel de la mécanique quantique » puis « potentiel quantique », il a été élaboré à partir des travaux de David Bohm et de Basil Hiley dans leur enquête sur la façon dont une particule quantique pourrait être guidée, dans sa trajectoire, par un « potentiel d'information ».
Champ de vecteurs hamiltonienEn géométrie différentielle et plus précisément en géométrie symplectique, dans l'étude des variétés symplectiques et des variétés de Poisson, un champ de vecteurs hamiltonien est un champ de vecteurs associé à une fonction réelle différentiable appelée hamiltonien de manière semblable au champ de vecteurs gradient en géométrie riemannienne. Cependant, une des différences fondamentales est que le hamiltonien est constant le long de ses courbes intégrales. Le nom vient du mathématicien et physicien William Rowan Hamilton.
Coloration de régionsLa coloration de régions est une technique de représentation des fonctions complexes. Le terme vient de l'anglais "domain coloring", inventé par Frank Farris aux alentours de 1998. La couleur avait déjà été utilisée plus tôt pour visualiser les fonctions complexes, en général en associant l'argument à la couleur. La technique consistant à utiliser une variation continue de couleur pour associer les points de l'ensemble de départ à l'ensemble d'arrivée ou au plan image a été utilisée en 1999 par George Abdo et Paul Godfrey.
Domain (mathematical analysis)In mathematical analysis, a domain or region is a non-empty connected open set in a topological space, in particular any non-empty connected open subset of the real coordinate space Rn or the complex coordinate space Cn. A connected open subset of coordinate space is frequently used for the domain of a function, but in general, functions may be defined on sets that are not topological spaces.
Ensemble de définitionEn mathématiques, l'ensemble de définition (également appelé domaine de définition ou parfois ensemble de départ, voir la discussion plus bas) d'une application ou d'une fonction désigne informellement l'ensemble des entrées acceptées par elle. La terminologie entre ensemble de définition et ensemble de départ diffère si l'on fait la distinction entre la notion de fonction et d'application ou non.