Résumé
En mathématiques, l'ensemble de définition (également appelé domaine de définition ou parfois ensemble de départ, voir la discussion plus bas) d'une application ou d'une fonction désigne informellement l'ensemble des entrées acceptées par elle. La terminologie entre ensemble de définition et ensemble de départ diffère si l'on fait la distinction entre la notion de fonction et d'application ou non. Pour une application f : A → B (ou pour une fonction si on ne fait pas cette distinction), les notions d'ensemble de définition et d'ensemble de départ sont confondues, il s'agit de l'ensemble A, autrement dit c'est l'ensemble des x pour lesquels f(x) est défini. Si on fait la distinction entre application et fonction, une fonction f : A → B peut ne pas être une application, son ensemble de définition, noté ici D, peut différer de son ensemble de départ A. L'ensemble de définition D est alors l'ensemble des éléments x de A pour lesquels f(x) est défini ; la différence avec les applications étant qu'il peut exister des x de A pour lesquels on ne définit pas f(x). Dans ce cas l'ensemble de définition D n'est pas égal à l'ensemble de départ A. Lorsque l'ensemble de définition est simplement un intervalle, l'ensemble de définition est parfois appelée intervalle de définition. Dans le cas où on distingue les notions de fonction et d'application, considérons C'est une fonction dont l'ensemble de départ est . Cependant, son ensemble de définition ne peut pas être égale à l'ensemble de départ puisqu'elle n'est pas définie en 0 : « f(0) » n'est pas défini, car il est impossible de diviser par 0. Ce n'est donc pas une application. Il faut donc préciser ici, pour définir complètement cette fonction, son ensemble de définition (ce qui n'est pas encore fait à ce stade). Il y a ici une infinité de choix possibles : tout sous-ensemble de l'ensemble de départ ne contenant pas 0 convient. Un choix « naturel » est simplement .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.