Function typeIn computer science and mathematical logic, a function type (or arrow type or exponential) is the type of a variable or parameter to which a function has or can be assigned, or an argument or result type of a higher-order function taking or returning a function. A function type depends on the type of the parameters and the result type of the function (it, or more accurately the unapplied type constructor · → ·, is a higher-kinded type).
Polygone convexeEn géométrie, un polygone convexe est un polygone simple dont l'intérieur est un ensemble convexe. Un polygone simple qui n'est pas convexe est dit concave. Pour un polygone simple, les propriétés suivantes sont équivalentes : le polygone est convexe, les angles du polygone sont tous inférieurs à 180 degrés, tout segment joignant deux sommets du polygone est inclus dans la composante fermée bornée délimitée par le polygone. Le polygone est toujours entièrement inclus dans un demi-plan dont la frontière porte un côté quelconque du polygone.
Majorant ou minorantEn mathématiques, soient (E , ≤) un ensemble ordonné et F une partie de E ; un élément x de E est : un majorant de F s'il est supérieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F : ; un minorant de F s'il est inférieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F :. Si F possède un majorant x alors on dit que F est une partie majorée. Si F possède un minorant x alors on dit que F est une partie minorée.
Ensemble bien ordonnéEn mathématiques, un ensemble ordonné (E, ≤) est bien ordonné et la relation ≤ est un bon ordre si la condition suivante est satisfaite : Toute partie non vide de E possède un plus petit élément. Formellement cela donne ∀X⊆E, X≠∅ ⇒ (∃u∈X, ∀v∈X u≤v). Si (E, ≤) est bien ordonné alors ≤ est nécessairement un ordre total, c'est-à-dire que deux éléments quelconques x et y de E sont toujours comparables. En effet, l'ensemble { x, y } possède un plus petit élément, donc on a x ≤ y ou y ≤ x.
DéfinitionUne définition est une proposition qui met en équivalence un élément définissant et un élément étant défini. Une définition a pour but de clarifier, d'expliquer. Elle détermine les limites ou « un ensemble de traits qui circonscrivent un objet ». Selon les Définitions du pseudo-Platon, la définition est la . Aristote, dans le Topiques, définit le mot comme En mathématiques, on définit une notion à partir de notions antérieurement définies. Les notions de bases étant les symboles non logiques du langage considéré, dont l'usage est défini par les axiomes de la théorie.
Limite (mathématiques élémentaires)La notion de limite est très intuitive malgré sa formulation abstraite. Pour les mathématiques élémentaires, il convient de distinguer une limite en un point réel fini (pour une fonction numérique) et une limite en ou (pour une fonction numérique ou une suite), ces deux cas apparemment différents pouvant être unifiés à travers la notion topologique de voisinage. Les limites servent (entre autres) à définir les notions fondamentales de continuité et de dérivabilité.
Convex geometryIn mathematics, convex geometry is the branch of geometry studying convex sets, mainly in Euclidean space. Convex sets occur naturally in many areas: computational geometry, convex analysis, discrete geometry, functional analysis, geometry of numbers, integral geometry, linear programming, probability theory, game theory, etc. According to the Mathematics Subject Classification MSC2010, the mathematical discipline Convex and Discrete Geometry includes three major branches: general convexity polytopes and polyhedra discrete geometry (though only portions of the latter two are included in convex geometry).
Point d'accumulation (mathématiques)En mathématiques, un point d'accumulation d'une partie A d'un espace topologique E est un point x de E qui peut être « approché » par des points de A au sens où chaque voisinage de x – pour la topologie de E – contient un point de A distinct de x. Un tel point x n'est pas nécessairement un point de A. Ce concept généralise la notion de limite, et permet de définir des notions comme les espaces fermés et l'adhérence. De fait, pour qu'un espace soit fermé, il faut et il suffit qu'il contienne tous ses points d'accumulation.
Fonction d'ordre supérieurEn mathématiques et en informatique, les fonctions d'ordre supérieur sont des fonctions qui ont au moins une des propriétés suivantes : elles prennent une ou plusieurs fonctions en entrée ; elles renvoient une fonction. En mathématiques, on les appelle des opérateurs ou des fonctionnelles. L'opérateur de dérivation en calcul infinitésimal est un exemple classique, car elle associe une fonction (la dérivée) à une autre fonction (la fonction que l'on dérive). Dans le lambda-calcul non typé, toutes les fonctions sont d'ordre supérieur.
Point isoléEn topologie, un point x d'un espace topologique E est dit isolé si le singleton {x} est un ouvert. Formulations équivalentes : {x} est un voisinage de x ; x n'est pas adhérent à E{x} (x n'est pas un « point d'accumulation »). En particulier, si E est un espace métrique (par exemple une partie d'un espace euclidien), x est un point isolé de E s'il existe une boule ouverte centrée en x qui ne contient pas d'autre point de E. Un espace topologique dans lequel tout point est isolé est dit discret.