Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Effets du bruit sur la santévignette|Le trafic et le bruit routier qu'il induit sont devenus la principale source de pollution par le bruit, dans les villes notamment Les effets du bruit sur la santé sont tous les effets que les sons (audibles ou inaudibles) peuvent avoir (à court, moyen ou long termes) sur la santé (directement ou indirectement). Ils sont la conséquence d'une exposition plus ou moins régulière, subie ou volontaire au bruit ambiant (ou généré par des écouteurs) à des intensités sonores trop élevées.
Pollution sonorethumb|Selon G. Dutilleux (2012), (ici, à titre d'exemple : vue de la circulation automobile urbaine à Bangkok, source majeure de nuisances sonores. thumb|L'échangeur de Daussoulx en Belgique ; autre exemple de source de nuisances sonores. La notion de pollution sonore regroupe généralement des nuisances sonores, et des pollutions induites par le son devenu dans certaines circonstances un « altéragène physique » pour l'être humain ou les écosystèmes.
Corrélation (statistiques)En probabilités et en statistique, la corrélation entre plusieurs variables aléatoires ou statistiques est une notion de liaison qui contredit leur indépendance. Cette corrélation est très souvent réduite à la corrélation linéaire entre variables quantitatives, c’est-à-dire l’ajustement d’une variable par rapport à l’autre par une relation affine obtenue par régression linéaire. Pour cela, on calcule un coefficient de corrélation linéaire, quotient de leur covariance par le produit de leurs écarts types.
Bruitvignette|Mesure du niveau de bruit à proximité d'une route à l'aide d'un sonomètre. Le bruit est un son jugé indésirable. Les sons qui ne se comprennent pas comme de la parole ou de la musique s'assimilent souvent au bruit, même si leur perception n'est pas désagréable, comme le montre l'expression bruit ambiant. Du point de vue de l'environnement, les sons indésirables sont une nuisance, souvent à l'origine de litiges. Ceux qui s'en plaignent les assimilent à une pollution.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Contrôle du bruitalt=|vignette| Sonomètre Le contrôle du bruit, sa gestion ou atténuation, sont les efforts déployés, en tout domaine, pour diminuer la pollution sonore et limiter l'impact du bruit, tant à l'extérieur qu'à l'intérieur des bâtiments et autres structures habitées. Parmi les principaux domaines concernés par le contrôle, d'atténuation ou de réduction du bruit figurent : le contrôle du bruit des transports (trafic routier, ferroviaire, aérien, des navires dans les ports, etc), la conception architecturale et l'urbanisme (via notamment des codes de zonage) ou encore le contrôle du bruit au travail.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Numerical linear algebraNumerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.