Dérivée partielleEn mathématiques, la dérivée partielle d'une fonction de plusieurs variables est sa dérivée par rapport à l'une de ses variables, les autres étant gardées constantes. C'est une notion de base de l'analyse en dimension , de la géométrie différentielle et de l'analyse vectorielle. La dérivée partielle de la fonction par rapport à la variable est souvent notée . Si est une fonction de et sont les accroissements infinitésimaux de respectivement, alors l'accroissement infinitésimal correspondant de est : Cette expression est la « différentielle totale » de , chaque terme dans la somme étant une « différentielle partielle » de .
Mesure de DiracIn mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element x or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields. A Dirac measure is a measure δx on a set X (with any σ-algebra of subsets of X) defined for a given x ∈ X and any (measurable) set A ⊆ X by where 1A is the indicator function of A. The Dirac measure is a probability measure, and in terms of probability it represents the almost sure outcome x in the sample space X.
Fonction de HeavisideEn mathématiques, la fonction de Heaviside (également fonction échelon unité, fonction marche d'escalier), du nom d’Oliver Heaviside, est la fonction indicatrice de . C'est donc la fonction H (discontinue en 0) prenant la valeur 1 pour tous les réels strictement positifs et la valeur 0 pour les réels strictement négatifs. En 0, sa valeur n'a généralement pas d'importance, même si souvent elle vaut 1/2. C'est une primitive de la distribution de Dirac en théorie des distributions.
Singularité nueEn relativité générale, une singularité nue () est une singularité gravitationnelle qui ne serait pas cachée derrière un horizon des événements. Le concept s'oppose à celui d'une singularité située à l'intérieur d'un trou noir, qui est cachée par l'horizon à partir duquel la force gravitationnelle courbe suffisamment l'espace-temps pour que même la lumière ne puisse s'en échapper. Par conséquent, les objets situés à l'intérieur de l’horizon des événements, y compris la singularité elle-même, ne peuvent être observés directement.
Wave front setIn mathematical analysis, more precisely in microlocal analysis, the wave front (set) WF(f) characterizes the singularities of a generalized function f, not only in space, but also with respect to its Fourier transform at each point. The term "wave front" was coined by Lars Hörmander around 1970. In more familiar terms, WF(f) tells not only where the function f is singular (which is already described by its singular support), but also how or why it is singular, by being more exact about the direction in which the singularity occurs.
Trou noir électroniqueUne notion spéculative en physique présume l’existence de trou noir électronique équivalent à un trou noir ayant la même masse et la même charge électrique qu’un électron. Cette entité aurait alors de nombreuses propriétés communes avec l’électron, dont le moment magnétique dipolaire de l’électron et la longueur d'onde de Compton. Cette idée figurait en substance dans une série d’articles publiés par Albert Einstein entre 1927 et 1940.