Prothèse du genouthumb|Modèle de prothèse du genou Une prothèse du genou est un implant articulaire interne qui remplace les surfaces articulaires défaillantes du genou, dans le but de permettre de nouveau un appui stable, la flexion et l'extension, et de récupérer un bon périmètre de marche. La prothèse de genou (PG ou PTG) est l'une des opérations les plus communément pratiquées : environ de genou sont posées chaque année en France, Outremer compris. En 2008, aux États-Unis, de genou ont été implantées, chiffre traduisant un taux d'accroissement annuel de 10 % au cours de la décennie 1990.
Robot kinematicsIn robotics, robot kinematics applies geometry to the study of the movement of multi-degree of freedom kinematic chains that form the structure of robotic systems. The emphasis on geometry means that the links of the robot are modeled as rigid bodies and its joints are assumed to provide pure rotation or translation. Robot kinematics studies the relationship between the dimensions and connectivity of kinematic chains and the position, velocity and acceleration of each of the links in the robotic system, in order to plan and control movement and to compute actuator forces and torques.
Forward kinematicsIn robot kinematics, forward kinematics refers to the use of the kinematic equations of a robot to compute the position of the end-effector from specified values for the joint parameters. The kinematics equations of the robot are used in robotics, computer games, and animation. The reverse process, that computes the joint parameters that achieve a specified position of the end-effector, is known as inverse kinematics.
Sous-espace vectoriel engendréDans un espace vectoriel E, le sous-espace vectoriel engendré par une partie A de E est le plus petit sous-espace vectoriel de E contenant A. C'est aussi l'ensemble des combinaisons linéaires de vecteurs de A. Le sous-espace vectoriel engendré par une famille de vecteurs est le plus petit sous-espace contenant tous les vecteurs de cette famille. Une famille de vecteurs ou une partie est dite génératrice de E si le sous-espace qu'elle engendre est l'espace entier E.
HyperlaxitéL'hyperlaxité (du latin laxitas : relâchement) ou hyperlaxie, est l’élasticité excessive de certains tissus comme les muscles, ou les tissus conjonctifs de la peau ou des articulations : tendons et ligaments. Les tissus les plus souvent affectés sont les ligaments. L'hyperlaxité peut avoir des causes héréditaires (le syndrome d'Ehlers-Danlos crée ainsi une hyperlaxité cutanée et articulaire, de même que le syndrome de Marfan) ou accidentelles (comme une entorse).
CinématiqueEn physique, la cinématique (du grec kinêma, le mouvement) est l'étude des mouvements indépendamment des causes qui les produisent, ou, plus exactement, l'étude de tous les mouvements possibles. À côté de la notion d'espace qui est l'objet de la géométrie, la cinématique introduit la notion de temps. À ne pas confondre avec la , un terme plus général qui concerne la vitesse et les mécanismes d'une grande variété de processus ; en mécanique, cinétique est utilisé comme adjectif pour qualifier deux grandeurs impliquant aussi la masse : le moment cinétique et l'énergie cinétique.
Régression vers la moyenneEn statistique, la régression vers la moyenne décrit le phénomène suivant : si une variable est extrême à sa première mesure, elle va généralement se rapprocher de la moyenne à sa seconde mesure. Si elle est extrême à sa seconde mesure elle va tendre à être proche de la moyenne à sa première mesure. Afin d'éviter des inférences erronées, la régression vers la moyenne doit être considérée à la base de la conception des expériences scientifiques et prise en compte lors de l'interprétation des données.
Programmation par contraintesLa programmation par contraintes (PPC, ou CP pour constraint programming en anglais) est un paradigme de programmation apparu dans les années 1970 et 1980 permettant de résoudre des problèmes combinatoires de grande taille tels que les problèmes de planification et d'ordonnancement. En programmation par contraintes, on sépare la partie modélisation à l'aide de problèmes de satisfaction de contraintes (ou CSP pour Constraint Satisfaction Problem), de la partie résolution dont la particularité réside dans l'utilisation active des contraintes du problème pour réduire la taille de l'espace des solutions à parcourir (on parle de propagation de contraintes).
Méthode des moindres carrés ordinairevignette|Graphique d'une régression linéaire La méthode des moindres carrés ordinaire (MCO) est le nom technique de la régression mathématique en statistiques, et plus particulièrement de la régression linéaire. Il s'agit d'un modèle couramment utilisé en économétrie. Il s'agit d'ajuster un nuage de points selon une relation linéaire, prenant la forme de la relation matricielle , où est un terme d'erreur.
Sous-espace vectorielEn algèbre linéaire, un sous-espace vectoriel d'un espace vectoriel E, est une partie non vide F, de E, stable par combinaisons linéaires. Cette stabilité s'exprime par : la somme de deux vecteurs de F appartient à F ; le produit d'un vecteur de F par un scalaire appartient à F. Muni des lois induites, F est alors un espace vectoriel. L'intersection d'une famille non vide de sous-espaces de E est un sous-espace de E. La réunion d'une famille non vide de sous-espaces n'en est généralement pas un ; le sous-espace engendré par cette réunion est la somme de cette famille.