In robot kinematics, forward kinematics refers to the use of the kinematic equations of a robot to compute the position of the end-effector from specified values for the joint parameters. The kinematics equations of the robot are used in robotics, computer games, and animation. The reverse process, that computes the joint parameters that achieve a specified position of the end-effector, is known as inverse kinematics. The kinematics equations for the series chain of a robot are obtained using a rigid transformation [Z] to characterize the relative movement allowed at each joint and separate rigid transformation [X] to define the dimensions of each link. The result is a sequence of rigid transformations alternating joint and link transformations from the base of the chain to its end link, which is equated to the specified position for the end link, where [T] is the transformation locating the end-link. These equations are called the kinematics equations of the serial chain. In 1955, Jacques Denavit and Richard Hartenberg introduced a convention for the definition of the joint matrices [Z] and link matrices [X] to standardize the coordinate frame for spatial linkages. This convention positions the joint frame so that it consists of a screw displacement along the Z-axis and it positions the link frame so it consists of a screw displacement along the X-axis, Using this notation, each transformation-link goes along a serial chain robot, and can be described by the coordinate transformation, where θi, di, αi,i+1 and ai,i+1 are known as the Denavit-Hartenberg parameters. The kinematics equations of a serial chain of n links, with joint parameters θi are given by where is the transformation matrix from the frame of link to link . In robotics, these are conventionally described by Denavit–Hartenberg parameters. The matrices associated with these operations are: Similarly, The use of the Denavit-Hartenberg convention yields the link transformation matrix, [i-1Ti] as known as the Denavit-Hartenberg matrix.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (28)
ME-104: Introduction to structural mechanics
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
BIO-687: Engineering of musculoskeletal system and rehabilitation
This course presents today research questions and methods associated to the musculoskeletal system, its pathologies, and treatment.
ME-411: Mechanics of slender structures
Analysis of the mechanical response and deformation of slender structural elements.
Afficher plus
Publications associées (168)
Concepts associés (8)
Chaîne cinématique (robotique)
thumb|Exemple de chaîne cinématique du corps humain. Le genou est représenté comme une liaison pivot, la hanche par une liaison sphérique, etc. La chaîne cinématique est un modèle mathématique des systèmes mécaniques dans lequel un ensemble de solides indéformables (les "corps" ou "liens" du système) sont connectés entre eux par des articulations. Les articulations d'une chaîne cinématique sont des liaisons mécaniques.
Cinématique inverse
La cinématique inverse (souvent abrégée IK, de l'anglais inverse kinematics) désigne l'ensemble des méthodes de calcul des positions et rotations d'un modèle articulaire afin d'obtenir une pose désirée. Les méthodes de cinématique inverse sont principalement utilisées en infographie, en robotique, en animation ou encore en chimie. Le terme cinématique inverse renvoie au fait que la résolution des calculs est généralement basée sur les équations cinématiques du modèle articulaire.
Robot kinematics
In robotics, robot kinematics applies geometry to the study of the movement of multi-degree of freedom kinematic chains that form the structure of robotic systems. The emphasis on geometry means that the links of the robot are modeled as rigid bodies and its joints are assumed to provide pure rotation or translation. Robot kinematics studies the relationship between the dimensions and connectivity of kinematic chains and the position, velocity and acceleration of each of the links in the robotic system, in order to plan and control movement and to compute actuator forces and torques.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.