Idéal (théorie des ordres)En mathématiques, un idéal au sens de la théorie des ordres est un sous-ensemble particulier d'un ensemble ordonné. Bien qu'à l'origine ce terme soit issu de la notion algébrique d'idéal d'un anneau, il a été généralisé en une notion distincte. Les idéaux interviennent dans beaucoup de constructions en théorie des ordres, en particulier des treillis. Un idéal d'un ensemble ordonné (E, ≤) est une partie non vide I de E telle que : I est une section commençante, c'est-à-dire que tout minorant d'un élément de I appartient à I ; I est un ensemble ordonné filtrant, c'est-à-dire que deux éléments quelconques de I possèdent toujours un majorant commun dans I.
Théorème de l'idéal premier dans une algèbre de BooleEn mathématiques, un théorème de l'idéal premier garantit l'existence de certains types de sous-ensembles dans une algèbre. Un exemple courant est le théorème de l'idéal premier dans une algèbre de Boole, qui énonce que tout idéal d'une algèbre de Boole est inclus dans un idéal premier. Une variante de cet énoncé pour filtres sur des ensembles est connue comme le théorème de l'ultrafiltre.
Géométrie arithmétiquevignette|Exemples de figures géométriques: un cône et un cylindre. La géométrie arithmétique est une branche de la théorie des nombres, qui utilise des outils de géométrie algébrique pour s'attaquer à des problèmes arithmétiques. Quelques exemples de questions qui peuvent se poser : Si on sait trouver des racines d'une équation polynomiale dans toutes les complétions d'un corps de nombres, peut-on en déduire que cette équation a des racines sur ce corps ? On sait répondre à la question dans certains cas, on sait que la réponse est non dans d'autres cas, mais on pense (c'est une conjecture) connaître l'obstruction et donc savoir reconnaître quand cela fonctionne.
Théorie des invariantsEn mathématiques, la théorie des invariants, initiée et développée en particulier par Arthur Cayley, James Joseph Sylvester, Charles Hermite, Paul Gordan et de nombreux autres mathématiciens, est l'étude des invariants des formes algébriques (de façon équivalente, des tenseurs symétriques) pour les actions de groupe lors des transformations linéaires. À la fin du , elle est au centre d'un important effort de recherche lorsqu'il apparaît qu'elle pourrait être la clé de voûte en algorithmique (en compétition avec d'autres formulations mathématiques de l'invariance de la symétrie).