Résumé
En mathématiques, la théorie des invariants, initiée et développée en particulier par Arthur Cayley, James Joseph Sylvester, Charles Hermite, Paul Gordan et de nombreux autres mathématiciens, est l'étude des invariants des formes algébriques (de façon équivalente, des tenseurs symétriques) pour les actions de groupe lors des transformations linéaires. À la fin du , elle est au centre d'un important effort de recherche lorsqu'il apparaît qu'elle pourrait être la clé de voûte en algorithmique (en compétition avec d'autres formulations mathématiques de l'invariance de la symétrie). Malgré un travail acharné, elle n'a pas tenu ses promesses, mais a permis de développer plusieurs autres disciplines. Au , les groupes symétriques et les fonctions symétriques, l'algèbre commutative, les espaces de modules et les représentations des groupes de Lie en sont les descendants les plus féconds. La plupart des invariants des géométries classiques (distances, angles, birapport, volume) sont, à un paramètre près, des fonctions polynomiales invariantes pour un groupe classique et ont des analogues sur des corps commutatifs plus généraux. Par exemple, dans un espace affine euclidien, la fonction qui associe à deux points le carré de leur distance est polynomiale, invariante par le groupe des isométries. La théorie des invariants consiste, pour une action de groupe donnée, à dresser une liste de fonctions polynomiales élémentaires invariantes pour le groupe considéré, desquelles toute autre fonction polynomiale invariante se déduit. On peut citer les exemples suivants : Pour le groupe symétrique permutant n nombres , les polynômes symétriques élémentaires sont invariants, et tout polynôme en invariant par le groupe symétrique est une expression algébrique de ces fonctions élémentaires. Pour le groupe orthogonal agissant dans un espace euclidien, le produit scalaire est invariant, et toute fonction de plusieurs vecteurs polynomiale en les composantes de ces vecteurs et invariante par le groupe est une expression algébrique du produit scalaire de ces vecteurs.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.