Problème de décisionEn informatique théorique, un problème de décision est une question mathématique dont la réponse est soit « oui », soit « non ». Les logiciens s'y sont intéressés à cause de l'existence ou de la non-existence d'un algorithme répondant à la question posée. Les problèmes de décision interviennent dans deux domaines de la logique : la théorie de la calculabilité et la théorie de la complexité. Parmi les problèmes de décision citons par exemple le problème de l'arrêt, le problème de correspondance de Post ou le dernier théorème de Fermat.
Routagethumb|Exemple de routage dans un réseau. Le routage est le mécanisme par lequel des chemins sont sélectionnés dans un réseau pour acheminer les données d'un expéditeur jusqu'à un ou plusieurs destinataires. Le routage est une tâche exécutée dans de nombreux réseaux, tels que le réseau téléphonique, les réseaux de données électroniques comme Internet, et les réseaux de transports. Sa performance est importante dans les réseaux décentralisés, c'est-à-dire où l'information n'est pas distribuée par une seule source, mais échangée entre des agents indépendants.
NP (complexité)La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.
Théorème du séparateur planaireEn théorie des graphes, le théorème du séparateur planaire, stipule que tout graphe planaire peut être divisé en parties plus petites en supprimant un petit nombre de sommets. Plus précisément, le théorème affirme qu'il existe un ensemble de sommets d'un graphe à sommets dont la suppression partitionne le graphe en sous-graphes disjoints dont chacun a au plus sommets. Une forme plus faible du théorème séparateur avec un séparateur de taille au lieu de a été prouvée à l'origine par Ungar (1951), et la forme avec la borne asymptotique plus fine sur la taille du séparateur a été prouvée pour la première fois par Lipton & Tarjan (1979).
Optimization problemIn mathematics, computer science and economics, an optimization problem is the problem of finding the best solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization, in which an object such as an integer, permutation or graph must be found from a countable set.
Vecteur de distancesLes protocoles de routage à vecteur de distances (distance vector) sont des protocoles permettant de construire des tables de routages où aucun routeur ne possède la vision globale du réseau, la diffusion des routes se faisant de proche en proche. Le terme « vecteur de distances » vient du fait que le protocole manipule des vecteurs (des tableaux) de distances vers les autres nœuds du réseau. La « distance » en question est le nombre de sauts (hops) permettant d'atteindre les routeurs voisins.
Hardness of approximationIn computer science, hardness of approximation is a field that studies the algorithmic complexity of finding near-optimal solutions to optimization problems. Hardness of approximation complements the study of approximation algorithms by proving, for certain problems, a limit on the factors with which their solution can be efficiently approximated. Typically such limits show a factor of approximation beyond which a problem becomes NP-hard, implying that finding a polynomial time approximation for the problem is impossible unless NP=P.
Graphe planaireDans la théorie des graphes, un graphe planaire est un graphe qui a la particularité de pouvoir se représenter sur un plan sans qu'aucune arête (ou arc pour un graphe orienté) n'en croise une autre. Autrement dit, ces graphes sont précisément ceux que l'on peut plonger dans le plan, ou encore les graphes dont le nombre de croisements est nul. Les méthodes associées à ces graphes permettent de résoudre des problèmes comme l'énigme des trois maisons et d'autres plus difficiles comme le théorème des quatre couleurs.
Transmission en mode sans connexionDans un réseau à commutation de paquets, la transmission en mode non-connecté ou transmission en mode sans-connexion est une transmission de données dans laquelle chaque paquet est préfixé par un entête contenant une adresse de destination, suffisante pour permettre la livraison autonome du paquet, sans recours à d'autres instructions. Un paquet transmis en mode non-connecté est fréquemment appelé un datagramme. Dans une communication orientée connexion, les stations qui sont prêtes à échanger des données doivent d'abord se déclarer comme voulant effectivement le faire.
Overconstrained mechanismIn mechanical engineering, an overconstrained mechanism is a linkage that has more degrees of freedom than is predicted by the mobility formula. The mobility formula evaluates the degree of freedom of a system of rigid bodies that results when constraints are imposed in the form of joints between the links. If the links of the system move in three-dimensional space, then the mobility formula is where N is the number of links in the system, j is the number of joints, and fi is the degree of freedom of the ith joint.