Rotation formalisms in three dimensionsIn geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.
Équation différentielle stochastiqueUne équation différentielle stochastique (EDS) est une généralisation de la notion d'équation différentielle prenant en compte un terme de bruit blanc. Les EDS permettent de modéliser des trajectoires aléatoires, tels des cours de bourse ou les mouvements de particules soumises à des phénomènes de diffusion. Elles permettent aussi de traiter théoriquement ou numériquement des problèmes issus de la théorie des équations aux dérivées partielles.
Rigid body dynamicsIn the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.
Modèle du solide indéformableLe modèle du solide indéformable est un modèle de solide fréquemment utilisé en mécanique des systèmes de points matériels. Il s'agit d'une idéalisation de la notion usuelle de corps (à l'état) solide, considéré comme absolument rigide, et négligeant toute déformation. Le solide indéformable est un modèle utilisé en mécanique pour décrire le comportement d'un corps (objet, pièce). Comme son nom l'indique, on considère qu'au cours du temps la distance entre deux points donnés ne varie pas.
Rotation (physique)En cinématique, l'étude des corps en rotation est une branche fondamentale de la physique du solide et particulièrement de la dynamique, y compris de la dynamique des fluides, qui complète celle du mouvement de translation. L'analyse du mouvement de rotation se prolonge y compris aux échelles atomiques, avec la dynamique moléculaire et l'étude de la fonction d'onde en mécanique quantique.
Rotateur rigideLe rotateur rigide est un modèle mécanique utilisé pour expliquer les systèmes en rotation (et particulièrement en mécanique quantique). Un rotateur rigide quelconque est un objet tridimensionnel rigide, comme une toupie. Afin d'orienter un tel objet dans l'espace, trois angles sont nécessaires. Le rotateur linéaire, objet bidimensionnel, est un cas particulier de rotateur rigide en trois dimensions ne nécessitant que deux angles pour décrire son orientation. On peut citer comme exemple de rotateur linéaire une molécule diatomique.
Lois du mouvement de NewtonLes sont un ensemble de principes à la base de la grande théorie de Newton sur le mouvement des corps, appelée mécanique newtonienne ou mécanique classique. À ces lois générales du mouvement, Newton a ajouté la loi de la gravitation universelle permettant d'expliquer aussi bien la chute des corps que le mouvement de la Lune autour de la Terre. Elles sont énoncées pour la première fois dans son ouvrage Philosophiae naturalis principia mathematica en .
Three-body problemIn physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's law of universal gravitation. The three-body problem is a special case of the n-body problem. Unlike two-body problems, no general closed-form solution exists, as the resulting dynamical system is chaotic for most initial conditions, and numerical methods are generally required.
Problème à N corpsLe problème à N corps est un problème de mécanique céleste consistant à déterminer les trajectoires d'un ensemble de N corps s'attirant mutuellement ; plus précisément, il s'agit de résoudre les équations du mouvement de Newton pour N corps interagissant gravitationnellement, connaissant leurs masses ainsi que leurs positions et vitesses initiales. Le cas (problème à deux corps) a été résolu par Newton, mais dès (problème à trois corps) apparaissent des solutions essentiellement impossibles à expliciter, car sensibles aux conditions initiales.
Calcul stochastiqueLe calcul est l’étude des phénomènes aléatoires dépendant du temps. À ce titre, c'est une extension de la théorie des probabilités. Ne pas confondre avec la technique des calculateurs stochastiques. Le domaine d’application du calcul stochastique comprend la mécanique quantique, le traitement du signal, la chimie, les mathématiques financières, la météorologie et même la musique. Un processus aléatoire est une famille de variables aléatoires indexée par un sous-ensemble de ou , souvent assimilé au temps (voir aussi Processus stochastique).