Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Symétrie de rotationEn physique, la symétrie de rotation, ou invariance par rotation, est la propriété d'une théorie, ou d'un système physique de ne pas être modifié soit par une rotation spatiale quelconque, ou alors par seulement certaines d'entre elles. Lorsque le système est invariant par n'importe quelle rotation d'espace, on parle d'isotropie (du Grec isos (ἴσος, "égal, identique") et tropos (τρόπος, "tour, direction"). Dans ce cas toutes les directions de l'espace sont équivalentes.
Polymèrevignette|Fibres de polyester observées au Microscopie électronique à balayage. vignette|La fabrication d'une éolienne fait intervenir le moulage de composites résines/renforts. Les polymères (étymologie : du grec polus, plusieurs, et meros, partie) constituent une classe de matériaux. D'un point de vue chimique, un polymère est une substance composée de macromolécules et issue de molécules de faible masse moléculaire. Un polymère est caractérisé par le degré de polymérisation.
Orientation dans l'espaceL'orientation d'un objet dans l'espace est une partie de la description de la façon dont un objet est placé dans l'espace. Cette orientation est relative et ne peut être décrite que par rapport à une orientation de référence ; l'orientation est alors la rotation imaginaire que l'objet devrait subir pour être placé de la même façon que la référence. Une rotation n'est pas en général suffisante pour retrouver le placement de référence et il est le plus souvent nécessaire de faire subir une translation à l'objet, ce qui correspond à la position de l'objet dans l'espace.
Mouvement à la PoinsotEn mécanique du solide, on appelle mouvement à la Poinsot, le mouvement d'un solide autour de son centre de gravité G, le moment des forces extérieures par rapport à G étant nul. Ce mouvement est caractérisé par la conservation du moment cinétique et de l'énergie cinétique de rotation , demi-produit scalaire du moment cinétique et du vecteur de rotation instantanée. Il existe 3 cas : le solide est à symétrie sphérique. Ses moments principaux d'inertie sont égaux : A = B = C.
Mouvement de rotationLa rotation ou mouvement de rotation est l'un des deux mouvements simples fondamentaux des solides, avec le mouvement rectiligne. En génie mécanique, il correspond au mouvement d'une pièce en liaison pivot par rapport à une autre. La notion de mouvement circulaire est une notion de cinématique du point : on décrit la position d'un point dans le plan. La rotation est une notion de cinématique du solide : on décrit l'orientation d'un solide dans l'espace. L'étude du mouvement de rotation est la base de la méthode du centre instantané de rotation (CIR).
3D rotation groupIn mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry), and orientation (i.e., handedness of space). Composing two rotations results in another rotation, every rotation has a unique inverse rotation, and the identity map satisfies the definition of a rotation.
Isolement d'un solidevignette|Schéma isolant un solide afin de percevoir l'ensemble des forces qui s'exercent dessus. En mécanique, l'isolement d'un solide est le fait de représenter un objet seul avec les forces extérieures s'exerçant sur lui. On utilise parfois le terme diagramme du corps libre, dont l'abréviation est DCL, traduction littérale de l'anglais free body diagram (FBD). Son utilisation peut faciliter grandement la résolution de problèmes en mécanique ou en cinématique.
Intégrale de StratonovichEn calcul stochastique, l'intégrale de Stratonovich (aussi intégrale de Fisk-Stratonovich) est un type d'intégrale stochastique. Contrairement à l'intégrale d'Itô, où seul le point final gauche de l'intervalle de décomposition est nécessaire pour la construction dans l'intégrale de Stratonovich, on utilise la moyenne arithmétique des extrémités gauche et droite L'avantage de l'intégrale de Stratonovich sur l'intégrale d'Itô est que la formule d'Itô n'a que des différentiels du premier ordre.
Rotation en quatre dimensionsEn mathématiques, les rotations en quatre dimensions (souvent appelées simplement rotations 4D) sont des transformations de l'espace euclidien , généralisant la notion de rotation ordinaire dans l'espace usuel ; on les définit comme des isométries directes ayant un point fixe (qu'on peut prendre comme origine, identifiant les rotations aux rotations vectorielles) ; le groupe de ces rotations est noté SO(4) : il est en effet isomorphe au groupe spécial orthogonal d'ordre 4.