GénomiqueLa génomique est une discipline de la biologie moderne. Elle étudie le fonctionnement d'un organisme, d'un organe, d'un cancer, etc. à l'échelle du génome, au lieu de se limiter à l'échelle d'un seul gène. La génomique se divise en deux branches : La génomique structurale, qui se charge du séquençage du génome entier ; La génomique fonctionnelle, qui vise à déterminer la fonction et l'expression des gènes séquencés en caractérisant le transcriptome et le protéome. La génomique est l'équivalent de la métabolomique pour les métabolites.
TranscriptomiqueLa transcriptomique est l'étude de l'ensemble des ARN messagers produits lors du processus de transcription d'un génome. Elle repose sur la quantification systématique de ces ARNm, ce qui permet d'avoir une indication relative du taux de transcription de différents gènes dans des conditions données. Plusieurs techniques permettent d'avoir accès à cette information, en particulier celle des puces à ADN, celle de la PCR quantitative ou encore celle du séquençage systématique d'ADN complémentaires. Métatransc
Génomique comparativeLa génomique comparative est l'étude comparative de la structure en fonction des génomes de différentes espèces. Elle permet d'identifier et de comprendre les effets de la sélection sur l'organisation et l'évolution des génomes. Ce nouvel axe de recherche bénéficie de l'augmentation du nombre de génomes séquencés et de la puissance des outils informatiques. Une des applications majeures de la génomique comparative est la découverte de gènes et de leurs séquences régulatrices non codantes basée sur le principe de conservation.
Prédiction de la structure des protéinesLa prédiction de la structure des protéines est l'inférence de la structure tridimensionnelle des protéines à partir de leur séquences d'acides aminés, c'est-à-dire la prédiction de leur pliage et de leur structures secondaire et tertiaire à partir de leur structure primaire. La prédiction de la structure est fondamentalement différente du problème inverse de la conception des protéines. Elle est l'un des objectifs les plus importants poursuivis par la bioinformatique et la chimie théorique.
Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
Classification en classes multiplesIn machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (notably multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.
Jeux d'entrainement, de validation et de testEn apprentissage automatique, une tâche courante est l'étude et la construction d'algorithmes qui peuvent apprendre et faire des prédictions sur les données. De tels algorithmes fonctionnent en faisant des prédictions ou des décisions basées sur les données, en construisant un modèle mathématique à partir des données d'entrée. Ces données d'entrée utilisées pour construire le modèle sont généralement divisées en plusieurs jeux de données .
Méthode des k plus proches voisinsEn intelligence artificielle, plus précisément en apprentissage automatique, la méthode des k plus proches voisins est une méthode d’apprentissage supervisé. En abrégé KPPV ou k-PPV en français, ou plus fréquemment k-NN ou KNN, de l'anglais k-nearest neighbors. Dans ce cadre, on dispose d’une base de données d'apprentissage constituée de N couples « entrée-sortie ». Pour estimer la sortie associée à une nouvelle entrée x, la méthode des k plus proches voisins consiste à prendre en compte (de façon identique) les k échantillons d'apprentissage dont l’entrée est la plus proche de la nouvelle entrée x, selon une distance à définir.
Validation croiséeLa validation croisée () est, en apprentissage automatique, une méthode d’estimation de fiabilité d’un modèle fondée sur une technique d’échantillonnage. Supposons posséder un modèle statistique avec un ou plusieurs paramètres inconnus, et un ensemble de données d'apprentissage sur lequel on peut apprendre (ou « entraîner ») le modèle. Le processus d'apprentissage optimise les paramètres du modèle afin que celui-ci corresponde le mieux possible aux données d'apprentissage.
Amarrage macromoléculaireL'amarrage macromoléculaire (en macromolecular docking) est la modélisation informatique de la structure quaternaire de complexes formés par plusieurs macromolécules biologiques en interaction. Les modélisations les plus courantes étant celles des complexes protéine-protéine et protéine-acide nucléique. L'amarrage vise à prédire la structure tri-dimensionnelle du complexe telle qu'elle est dans l'organisme vivant. La procédure peut produire plusieurs structures candidates qui vont ensuite être classées suivant leur pertinence d'apparaître dans la nature.