Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.
We establish several results towards the two-variable main conjecture of Iwasawa theory for elliptic curves without complex multiplication over imaginary quadratic fields, namely (i) the existence of an appropriate p-adic L-function, building on works of Hida and Perrin-Riou, (ii) the basic structure theory of the dual Selmer group, following works of Coates, Hachimori-Venjakob, et al.. and (iii) the implications of dihedral or anticyclotomic main conjectures with basechange. The result of (i) is deduced from the construction of Hida and Perrin-Riou, which in particular is seen to give a bounded distribution. The result of (ii) allows us to deduce a corank formula for the p-primary part of the Tate-Shafarevich group of an elliptic curve in the Z(p)(2)-extension of an imaginary quadratic field. Finally, (iii) allows us to deduce a criterion for one divisibility of the two-variable main conjecture in terms of specializations to cyclotomic characters, following a suggestion of Greenberg, as well as a refinement via basechange. (C) 2011 Elsevier Inc. All rights reserved.
Tako Boris Fouotsa, Laurane Chloé Angélina Marco, Andrea Basso